Geospatial and Imagery Access
Services Specification

National Imagery and Mapping Agency
United States Imagery and Geospatial System

Release Date: 22 July, 1997
Version 3.0

Acknowledgments

Many individuals and organizations provided support and technical contributions to this
work, Individuals from numerous government agencies, contractor organizations and
vendors contributed significantly to the development of this specification. We acknowledge
these contributions and hope that these individuals and organizations will continue to
actively support future updates and extensions. Thanks in advance.

Revision History

Image Access Facility, Version 0.1 Straw 23 May 1995.

Image Access Facility, Version 0.2 Tin 11 June 1995.

Image Access Facility, Version 0.3 Aluminum 19 June 1995.

Image Access Facility, Version 0.4 Copper - For USIS release June 21, 1995.

Image Access Facility, Version 0.5 Nickel - Preliminary draft release for Image
Access Working Group (IAWG) June 29, 1995.

Image Access Facility, Version 0.6 Iron - This release contained arelatively
complete description of semantics and sequencing for sample implementation
prototypers. July 12, 1995.

Image Access Facility, Version 0.7 Silver - This release addressed comments
received. September 6, 1995.

Image Access Facility and Catalog Access Facility, Version 0.8 Gold - This
release contained extensions based upon the additional architecture mining.
February 8, 1996.

Image Access Facility and Catalog Access Facility, Version 0.85 Gold Interim -
Update for release and comment on March 22, 1996.

Image Access Services Specification, Version 0.9 Platinum - Revisions based
upon comments from Core Team Working Group, April 24, 1996.

Image Access Services Specification Version 1.0 - ICCB Configuration-
controlled, pilot operational specification for contractor and commercial
prototyping and interoperability testing, June 20, 1996.

Image Access Services Specification Version 1.1 -
Revised to remove TBR’s and TBDs concerning the PNF and IDF. Released for
comments December 6, 1996

Image Access Services Specification Version 1.1 -
Approved by ICCB December 20, 1996.

Planned Releases

Name of document changed to Geospatial and Imagery Access Services
Specification. Version number set to 3.0 to reflect extensions and updates for
inclusion of geospatial data and operations.

Geospatial and Imagery Access Services Specification
Version 3.0 - Released for NCCB submittal 22 July 1997

Geospatial and Imagery Access Services Specification Version 3.1 - Update to
incorporate responses and comments from additional interface prototyping tests
- Nov. 1997 (TBR)

Regular updates at approximately six month intervals.

Preface

This document defines common interfaces for the United States Imagery and
Geospatial System (USIGS) geospatial and imagery access services.

This specification was prepared consistent with industry practices and is modeled after
those being prepared by the Object Management Group (OMG) industry consortium. This
approach is consistent with guidelines and direction established by the NIMA Common
Imagery Interoperability Working Group (CITWG).

L]
Table Of Contents —
AACKNOWLEDGMENTS. .. ttettesteesteeteeteesseasteesseesseesseeabee st e s e ease e as s e sheeahe e se e b e e Re e b e e R e £ eh e e AR e e e R e e eh e e e Reenheenbeeabe e eaneanneennennnenaes [
REVISION HISTORY ...ttt ettt ettt et s bt e ettt e e e aae e e e 2 st e e a2 e at e e a2 a2 s ee e a2 ase e a2 e aRe e e e e e abee a2 amne e e e easbe e e e anneeeeeanbeeeeannaeeeannnnas Il
PLANNED RELEASES.......tteieittte ettt ettt e ettt e e et e e e e s ate e e e e se e e e e e aas e e e e mbe e a2 aass e e a2 as e e e e e ambee e e e neee e e nns e e e ennneee s nbeeeaannneeeannneas i
PREFACE ..ttt ettt ettt oo b et e oottt et ook bt e e e eab e e e e e AR e e e e e AR e e e e e oaEEe e e eREe e e enEe e e e eReeeeeeaREeeeeaaneeeeanreeeaanreeeeannrees 1%
L OVERVIEW ..ttt ettt ettt e h e E e e bt e st e et e e st e e st e ae e e eE e e b e e R e e st e a b e e aneeaneenseeaEeeabeeneeneereenneeas 1
D.] BACKGROUND.ctituttteaautteaeaaueeeaaaabeeeeaauseeaaauaeeeaaanseesassseeeeaasseaeeanee e a2 aseee e aassEe e e e anbee a2 amsseaeeaseeeeeanneeeeeanbeaeeanseeeeannnnas 1
L2 OV ERVIEW ..ttt ettt ettt e ettt e e et e e e e st e e a2 st e e a2 aase e et e 4R e e a2 2 as e e a2 e as e e e a2 nbe e e 24 aabEe e e e nbee a2 anse e e e easee e e e e anbeeeeannseaeenreeeeannneas 1
2. INTERFACE OVERVIEW ...ttt b bbbttt e s b e e s b e e s b e e s b e e b e e b e e nneene s 7
2.1 OVERVIEW ...ttt ettt ettt ettt e e ettt e ettt e e e s et e e 2 see £ a2 2asbb e a2 4Rt e e e 24 a s e e e a2 Re e £ 22 sReEe a2 4R b e e a2 abeee e e aneeeeenneeeeeaneeeeeanneeeeanreeeanne 7
A D N N I = = TSP PU PP UURPTUPPPPRNt 7
2.2. 1 USIGS COMIMON ODJECLS ...ttt ettt ettt ettt sa e e st e e s abe e s bt e eabeeeabeeeanbeesnbeeabeeaneesnneanns 8
2.2.2 GIAS SPECITIC DB YIS, .. cuteeeeetetee ettt ettt rtee st sae e e st e e s beesasee e sabeesateaaabeesabeeaaseeaabeeesnbeesnbeeabeeaseesnnneanns 9
2.3 INTERFACES ...ttt ttttteetteeeatteeeeauebeeeeaseeeeaaaseeeeaaseee e aee et e e aabeeeeaas e e e e amneee e aase e e e e e ambee e e e s ee e e e aneeeeensneeeeeanbeeeeanseaeaannneaean 15
P R I 1o = TSRO PP OUP PRSI 15
G T2 o (0o L1 [TSRO 17
ARG R N CT=o] o o 1 [o! AP RUTR 18
R Y =0T o 1= T PP EP T PPPRROTRR 18
2.3.5 REOUESEIMIBNAGEYeeeeeit etttk bt ettt e e e aee e e e e aae et e e s abe e e e ase e e e aase e e e anne e e e e anseeeeenbeeeeansneeeanneeeaeannneaans 20
2.3.6 ACCESSIMIANEAGET ...ceiitiieettie et e et e e ettt e e ettt e e s aee e e e aasbee e e s bbe e e e as e e e e e s se e e e e aneee e e anneee e e nbeeeeannreeeaannreeeeanreaann 22
2.3.7 GEODBLASEIM O ... eeteeteeteete ettt ettt ettt et e bt et e e bt e sbeesb e e ab e e b e e bt e b e e bt ea b e e aheeaR e e R e e R e e Rt e b e e ne e beennnennen 24
2.3.8 GEOFEALUINEIMI G .. eeteee et ee et e ettt e e ekttt e et et e e esee e e e as b e e e e s asee e e e as e e a2 e ase e e e asneee e e amseeeeenneeeeannneeeannneaasannneaann 26
ARG R N O (= (Lo o]\ e PRSPPI 28
2.3.10 CalalOGA CCESSIMIQIeeeiteeeuteeeteeateeeteeesbeaabeeaaaeeaeeeaaeeaaaeee s beeabeeaaseeaaaee e aeeeaaseeaabeeeabeeeaseeeanseasnseesnseesnneeas 31
2.3 11 ATTAY A CCESSIMIGE ...ttt ie ettt e ekttt e e ettt e e e aee e e e aaae e e e e s b be e e e ab e e e e aase e e e e nne e e e e oanbe e e e nbeeeeanreeeaanneeeeenreaans 33
2.3. 12 PrOOUCLA CCESSIVIQI «...eeeeteeeteeeteeetee et e e bt e et e bt e e aeeaaeeeaeeeabeeebee e s e e e aee e aeeeaaeeeaabeeeneeeasbeaanseesnseesnseesnneeas 34
A I R g 0T 1Y o OO UT T PUPRROTPR 35
ARG TN N e o) 11 1=V, o | PP 37
2.3.15 ViTBOA CCESSIMIGE ...ttt ettt ettt e et e bt e e et e e ae e e st e e e be e et e a2 bt e 2 ae e e se e e aae e e e beeebeeeaseeeanneennseesnneaeannaas 38
2.3.16 REOUESL.......eeeateete ettt ettt ettt ettt et e et e e st eas e sb e e b e e b e e R e e R e e R e e R e e R e e AR e e R e e Re e R e e R e e R e e Rt e n e e nbeenneenne e neennen 38
2.3.17 DiSSEMINGIEREGUESL ... eeiitieitie ettt et et et e te e rae e e saeeessbe e e abeeaaaeeeaaeeeaeeeaaseesaseeeaaeeeasbeesnseesaseesnseasnneaas 41
2.3.18 FEALUMNEREUESE ... ettt ettt sttt ettt ettt e st e s e s bt e sb e e sb e e bt e b e e b e e st e an e e sheeab e e b e e be e ne e b e e beenneennnenneas 41
2.3.19 CrealiONREOUESL ... eeeiieeeiie et ee ettt et et e e bt e e be e e aee e be e s be e e beeaaeeaaee e seeeasbeeabeeabeeeaseeeaneeesnseesnneaeannean 42
2.3.20 GELREJIONREGUESL ...ttt ettt ettt et e e s bt e et e e e bt e e aee e ae e e aaee e e abeeeebeeeameeaanseesnseesnneesnnneas 42
2.3.21 QUEIYREOUESL ... ceteeuteetieteete et e bt e st et esbe e bt e bt ebeeaseesheesbeesbe e b e e s e e st eabeeas e e ahe e ab e e abe e bt e beeneenbeeneesneenneennean 43
2.3.22 PrOfIHEREOUESL ...ttt ettt e e bt e e bt e e bt e e e be e e be e e be e e beeeaneeenneeeeabeeeaneean 44
2.3.23 MAKEAVAIlADIEREGUESL ...ttt bbbt b e bbbt b e b e et e e be e s b e e nneenean 44
2.3.24 HitCOUNTREGUESL ...ttt ettt ettt ettt b e s bt b e bt e bt et e e st e e e e b e e s beenbe e be e b e e b e ene e nnennnas 45
2.3.25 ParaMELEISREGUESL ... eeieeeiiee et ee ettt et e e ettt e e e sttt e e ekt b e e e e et ee e e e ae e e e e aaneeeeaasebeeeeanbeeeeasreeeaanbeeeeannneeaans 45
2.3.26 INQESIREGUEST ...ttt ettt ettt b e b e s bt e bt e bt e bt et e e bt e she e sh e e e b e e b e e be e bt e b e e ne e nneenneenne s 46
2.3.27 CAIIDACK ...tttk ettt h bbb b bt Rt bt R e R e e R e R e e R e e R e e R e e ne e nbeenheenneenneennean 47
2. EX CEPTIONS. ..t tttteeutteeeatteeeaauebeeaeaseee e e aseeeeaase e e e eane e e e e aaseee e e aee e a2 amse e e e e ase e e e e e ambee e e e anee e e e aneeeeensneeeeeanbeeeeanseaeaanneeanan 47
A e = o (e g I 1 1] 01= 1] [P RURPSRUR 47
A Yo LN W oSS O = g - TSRS 438
2. 4.3 BAOACCESSVBIUE ...ttt ettt et e e bt e et e e et e a2 bt e e be e e st e e e b et e be e e beeebeeeaneeenneeeanbeeeannaan 438

2.4.4 BadCreati ONATITDUIEV @IUB. ..ottt ettt e st e e s mte e e sbe e sabeesnteeenbeeenneean 438
2.4.5 BAOEMAIHTAGAIESS. ... ettt ettt ae e bt e et e e be e e bt e e be e e ae e e aabe e e beeebeeeneeeneeesneeesnnaeennnaas 438
2.4.6 BAOGEOREGIONeiiiiieitieetie ettt ettt e st e e be e e teeeasbe e eabe e s abeeeabe a2 s e e aaseeaase e e embeeaabeeaaseeeseeeneeesneeeanbeeeaneaan 49
A A Yo | I Lo 4 o o DR R PR 49
2.4.8 BAOPTOPEITYV BIUE ...ttt ettt ettt ekttt et e e bt e e bt e e ae e e ae e e eae e e e bee e beeeseeeanseesnseesnneaeanneas 49
A Y=o (@ U1 YRR 49
2.4.10 BaQUEIYATIIIDULE. ...ttt ettt bt e e st e st e e e sbe e e sae e e s sb e e raeeesaseesnneasnneeas 49
2.4. 10 BAOAQUEIYV BIUE. ...ttt ettt et e e e bt e e bt e et e e 2 bt a2 bt e e se e e e nbe e e be e e bee e seeeaneeesneeeanbeeennneas 49
A A T o I N1 o =PRI 50
2413 BAOUSEMOUE.ottt ettt ettt e e e e s bt e et e e e bt e et e e e bt e e st e e embe e eabeeambeeanbeeeneeeaneeesbeeeaneaan 50
2.4. 14 ImPlemMENtatiONLIMIT.ottt ettt rb e e e sbe e e eaeeesae e e saeeesase e e aaeeessbeeanseesnseesnseesnneaas 50
2.4.15 UNKNOWNCAIIBEACK ...ttt ettt sttt a et et e e st e e e st e e e abe e e ebeeesaeeesmneesnreesnneasnneeas 50
2.4.16 UNKNOWNC A ONATIITDULEeeieii ettt ettt ettt et e e st e e s ase e smbe e enbe e e smbeesnbeeenbeaeneean 50
A L 01 (g To T g oo [N ot i IV = OSSPSR 50
2.4.18 UNKNOWNM BNAGEI TY . ..ttt euteeateeetee e sttt e e steaasteeaaaeeaaaeeaaaeeaaaeeaaaseeaaaeeeaaseaaaseaaaseesaseesaseeesnbeeanseesnsesanseesnsensn 50
2.4. 19 UNKNOWINPYOOUCLeiitiiitie et etie et ettt ettt e et e e ae e e et e e e be e e bt e e seeaaeeeaaeeeebeeebeeeanseeaneeesnseeanneeaaneeas 51
2.4.20 UNKNOWNPYOPEITYeeeiteeetieeteeetieeteeeatee s bt e asteeaaeeaseeaaaeeasbeeaabeeaaseeaseeaseeeaasesaabeeeaneeeaseeeanseesnseesnseasannens 51
2.4.27 UNKNOWINREOUESEeeitieitie et etie ettt et e st e et eatee st e e aeeesbeeabeeaaeeeaee e aeeeaaeeeeabeeeseeeaseeaanseesnseesnneasaneeas 51
2.4.22 UNKNOWNUSEM OUEeeiiieitie ettt ettt ettt et e it e e s bt e e ebe e e bt e e aee e ae e e easeeeabe e e eaeeeaabeeanseesnreesnneesnneeas 51
2.4.23 UNregiSter@dCalIBACKoo ittt ettt ettt sae e ae e e st e e et e e e eate e st e e sab e e e neeeneeeneas 51
3. BOOLEAN QUERY SY N T A X ittt ittt ettt ettt et e et e e ae e e ae e e s be e e sbe e e abee e aeeesaseesaseesaabeesabeesnseesnsessneaan 52
.1 OVERVIEW ..ttt ettt ettt ettt e e ettt e e ettt e e et e a2 s ae e e e 2 aa b et 22 ab e e a2 4o ss e a2 2 ns e £ e 22 aRe £ e e 2o amb e e e e e s Ee e e e nneeeeenRne e e e e anbeeeeanreeeeannneeean 52
B T = 1@ ST =5] PRSP 52
3.3 BINF DEFINITION ...ctiiutteteeuteeeeautteaeausteeesauteeeaasseeeaaasseeeaassseeeeaaseeeeaasee e e e seeee e amnee e e e e nbe e e e aasseeeeanneeeeannneaeesnreeeeannnneaan 52
B4 BQS EXAMPLES. ...tttttiiiiiiiiittittee e essstttee e e s e s s s ssaaaeeaassessassbaaeeaasessssnssaeeaeseennssnnns ERROR! BOOKMARK NOT DEFINED.
4.1 SIMPIE ATIIDULES ...ttt ettt e bt e e bt e et e e e bt e e ae e e be e e aabe e e beeebeeeseeeaneeesneeesnnaeennnaas 67
3.4.2 GEOSPALial ATLIIDULES.ottt et e ettt e e it e e sa b e e e rbe e e sabeeeaeeesareesnneennneeas 67
3.4.3 Relative Geospatial AIITIULES..........i ettt ettt e et e s be e e be e s sabeesnbeeebeeeneean 67
O YT o [0 {0 PRSP 67
N S B B N €1 N B ISR 68
5. APPENDIX B: REFERENCE OM G STANDARD IDL ..ottt ettt naee s 84
CORBA STANDARD EXCEPTIONS......eitiiitttteaitteeaatteeaeateeeasaseeeeaasseaaaasseaasaaaseeaaaasseeaaassseeaasseeeaaasseeesasseesaanseessansneesans 84
6. APPENDIX C - UML DIAGRAMS. ...ttt ettt sttt e et e sae e e s st e e sae e e e abeeeabeeansbeeanbeesnbeeaneean 85
A N 12 L0 1NN b 1Y T USRI 88
8. POINT S OF CONT A CT ittt ettt ettt et e e et e s tee e bt e e o s be e e abe e e abeeabee e beeaaseeeaabeeeaaeeeaaseesaseeanseesaneesnbeana 1

Vi

1. Overview

1.1 Background

1.2 Overview

The Geospatial and Imagery Access Services (GIAS) specification
defines the core interfaces of the United States Imagery and Geospatial
System (USIGS) libraries for client access to geospatial information. Accessis
defined to include search, discovery, browsing and retrieval of information
and its associated meta-data. Geospatial information is defined to include
imagery and imagery-based information, maps, charts and any other data that
has awell defined association with a point or area on the Earth.

The GIAS interfaces are specified using the OMG Interface Definition
Language (IDL). IDL is alanguage-independent notation for specifying
software interfaces. IDL can be readily compiled into software interfaces for
various programming languages including C, C++, Ada95, and Smalltalk.

To help the reader assimilate the GIAS interface specification, a series of
figures are presented providing varying levels of details concerning the
interface’ s structure and usage. At the highest level of abstraction, the GIAS
interface are partitioned into four activity categories: library; request
managers; request objects; and callback/product objects. Figure 1 shows how
the GIAS interface is structured and what are its activity categories.

@ --- M an ager
» ———

Library

Ancestor M anager
Information Selection

Categories
of
Request .
Ancestqr Submittal Activities
Information
‘_
Request
Il Request N
/,’ Manipulation/Retrieval AN
ey Callbacks Products

Figure 1 - GIAS Interface Structural and Activity Models

Thisfigure is based on the scenario that a GIAS client requires access to a
library, which is accessible through the GIAS interface. The GIAS client
interacts with the Library to select and request access to a manager of a
specific type. (“manager selection activity category”). Using the provided
Manager the client can submit requests for the Library to perform tasks
(“request submittal activity category”). Each request submittal returns a
Request object. The GIAS client then uses the Request object to monitor
progress on the task and to retrieve the results. The Request object also
provides a mechanism (a Callback) to allow a client to be notified of the
progress of the task. The GIAS client can also obtain information (* ancestor
information activity category”) on a specific request or manager. Thisallows a
GIAS client to determine for any Request, the Manager that is managing it and
for any Manager determine the Library(s) it services.

Figure 2 provides another view of the GIAS interface specification asa UML
class diagram. Asin figure 1, the class diagram is partitioned in four
categories of classes: Library; Request Managers, Request Objects; and

Callback/Product Objects. This figure shows the specific operations available
on the major objects of each category. It also includes a SampleM gr object
and a SampleRequest object to indicate how specific capabilities are produced
from the general purpose objects. The GIAS specification includes a number

of specific managers and requests based on this model.

<<Client>>
GIAS Client

<<IDL interface>>
Library

[*F:get manager types()
*:access criteria()
*:0et manager()
"““*about()

Manager

<<IDL abstract interface>>

<<IDL abstract interface>>
Request

I|"“""Euet prooerties()
[:get_libraries()

1

RequestManager

" :get default time()
*:set timeout()
[.delete_request()

Ill""ilist active reauest()
" .set default timeout()

Saabout()
®yser info()
®get status()
®acancel()

" yreqister callback()
g

“free callback()

“Fueqister email callback()
®avhic h_request_manager()

h

<<IDL interface>>
SampleMgr

“.send_request()

<<IDL interface>>
SampleRequest

w.complete()

<<IDL interface>>
Callback

<<IDL abstract interface>>
Product

%, callback notify()
" urelased()

T

<<IDL interface>>
GeoProduct

Figure 2 - Generic GIAS Interface Class Diagram

Figure 3 provides a sequence diagram for a generic set of activities (i.e.,
actions) that would be common for most requests made by GIAS clients. The
scenario isinitiated by the GIAS Client inquiring and obtaining a list of what
types of managers are available from the GIAS Library. Upon receiving and
evaluating the list, the GIAS Client selects a manager type (SampleMgr) and
request access to a manager object of that type from the GIAS Library. The
GIAS Client uses this manager to submit requests (send_request). The
SampleMgr returns a SampleRequest object to the client. In this scenario, the
GIAS Client is associated with a Callback object. It registers this Callback
object with the SampleRequest. When the SampleRequest compl etes,
SampleRequest invokes callback notify on the Callback object.

| 1
GIASClient : GIAS : Library | |GIASRegeustMgr GIASCallback | GIASReguestOpject
GIAS Client -SampleMgr | | Object: Callback SampleRequest |
1: get_manager_types () n
2: get_manager ()
3: send_request ()

U

4: register_callback ()

5: callback_notity ()

L

Figure 3 - GIAS Client Generic Request Sequence Diagram

The complete UML class diagram for the GIAS Interface specification
described in this document is shown in figures 4 -7 below.

<<IDL interface>>
CreationRequest

<<IDL interface>>
Library

about()

%get_manager_types()
$access_criteria()
$get_manager()

Figure 4 - GIAS Interface Class Diagram
(TheLibrary)

<<IDL
Product

<<IDL interface>>

Callback

%callback_notify()
%released()

<<IDL
GeoProduct

Figure5 - GIAS Interface Class Diagram
(Callback and Product)

<<IDL abstract interface>>
Request

Scomplete()

<<IDL interface>>
Disseminaterequest

/7

$about()

$user_info()

%get_status()

%cancel()
%register_callback()
%free_callback()
%register_email_callback()
%which_request_manager()

Scomplete()

<<IDL interface>>
FeatureRequest

< |

<<IDL interface>>
QueryRequest

®numHits()
%complete()

<<IDL interface>>
ProfileRequest

SnumHits()
®complete()

<<IDL interface>>

MakeAvailableRequest

%complete()

<<IDL interface>>
GetRegionRequest

<<IDL interface>>
HitCountRequest

®complete()

<<IDL interface>>
GeoParameterRequest

%complete()

%complete()

%complete()

Figure 6 - GIAS Interface Class Diagram
(The Requests)

IngestRequest

%complete()

<<IDL abstract
AccessManager

%list_use_modes()
%check_availability()
®make_available()

<<IDL abstract interface>>
Manager

%get_properties()
%get_libraries()

<<IDL abstract interface>>
RequestManager

%list_active_request()
%set_default_timeout()
%get_default_time()
@set_timeout()
%delete_request()

<<IDL interface>>
{rpdictAccess<gr

%get_parameters()

<<IDL interface>>
ProfileMgr

@submit_profile()

<<IDL interface>>
CreationMgr

<<IDL interface>>
CatalogAccessManager

@submit_query()

<<IDL interface>>

<<IDL interface>> %hit_count()

%create()
¥metadatCreate()

<<IDL interface>>
GeoDataSetMgr

GeoFeatureMgr

ArrayAccessMgr

%get_region()

“disseminate()
“%get_subgeo()

%get_features()

Figure 7 - GIAS Interface Class Diagram

(The Managers)

IngestMgr

@bulk_pull()
@bulk_push()

2. Interface Overview

2.1 Overview

modul e A AS
{

}s

2.2 Data Types

The GIAS specification defines, through the use of IDL, the interfaces,
data types and error conditions that represent a geospatial information library.
A GIAS based geospatial library has interfaces that allow a client to search
and discover information (data sets/products) contained in the library, inquire
about details of a particular data set/product and arrange for the delivery of the
data set/product to another location or to another system. Also provided are
interfaces to allow a client to nominate information to be included in the
library. There are also interfaces to allow library-to-library interchange of
information as well as interfaces that support management and control of the
client-library interactions.

The GIAS specification does NOT define interfaces for functions such
as: locating libraries with specific characteristics (thisis the function of a
Trading service), requests for the collection or acquisition of information not
in alibrary (thisisthe function of a collection requirements system),
management of the underlying communication and other infrastructure or
requests for processing of information not directly related to the search or
delivery of information (thisis the function of the exploitation and production
systems).

The definitions and semantics associated with the elements of the GIAS
specification are intended to be as general and as broadly useful as possible. It
isintended to be a description of any single implementation or system but is
intended to allow great latitude in the design and implementation schemes for
geospatial libraries. However, to ensure interoperability, all systems that must
interoperate must make the same interpretations concerning this general
specification. A profile of the GIAS specification for the intended community
of useisacritical supplement to the GIAS specification itself. A profileisa
formal documentation of the specific interpretations, limits, and conventions
chosen by the community of use. The USIGS community will be producing
profiles of the GIAS specification that document these factors.

The following sections detail the interfaces, data types and error
conditions that compose the GIAS interface definition.

All elements of the GIAS definition are contained in the GIAS module:

all dAS elenents ...

2.2.1 USGS Common Objects

In order to support interoperability among the components of the USIGS
architecture, the most common or most broadly useful interfaces, data types
and error conditions have been defined and collected into the USIGS Common
Object Specification. Theintent is for all USIGS specifications to draw upon
the UCOS definitions when appropriate rather then redefine a common
element. In order to support interoperability, the GIAS specification uses the
definitions in the UCOS whenever they are appropriate. The specific UCOS
entities that GIAS uses are detailed below. The definitions given are
descriptions of how GIAS uses these entities and are not intended to replace
the definitions specified in the UCOS. Only cases where the UCOS data type
isused as an element of a GIAS datatype are detailed below. For cases where
the UCOS element isused in a GIAS operation, itsintended use is defined in
the text accompanying each operation. All GIAS operations are defined in
section 2.3

2.2.1.1 NameVaueList
t ypedef UQCQ : NanmeVal ueLi st PropertylLi st;

The NameValuelist structure is re-used to hold the name value pairs
(Properties) that are used to augment or clarify many of the operations of the
RequestM anager.

struct Regi onDat a
{

CGeoRegi on boundari es;
UCO : NaneVal uelLi st regi on_dat a_header;
any tile_data;

};

The NameValueList region_data_header in the RegionData structure is
used to hold information that describes the particular data set contained in
tile_data . The information in region_data_header is analogous to the header
information in afile that describes the content of thefile.

struct RequestDescription
{
string user_info;
string request_type;
string request _info;
UCQO : NaneVal ueli st request details;
s

The NameValueList request_details in RequestDescription is used to
hold information that fully describe the Request which with it is associated.

2.2.1.2 Rectangle

t ypedef UQQ : Rectangl e GeoRegi on;

The GIAS specification uses the GeoRegion data type to define
geospatial subsections of products or data sets. Currently the only type of
subsection allowed is rectangular. The GIAS specification thus defines
GeoRegion based on the UCOS Rectangle.

2.2.1.3 Status and State

The GIAS specification uses the State enumeration defined in UCOS
identify the state of Request objects. An important concept defined by UCOS
State isthat of a TERMINAL and NON_TERMINAL states. As defined by
UCQOS, “A processin a TERMINAL state will remain in that state until action
is taken that causes it to change state. A NON-TERMINAL state will
eventually change to a TERMINAL state without any further action being
taken.” See section 2.2.4 of the UCOS specification for further details.

2.2.2 GIAS Secific Data types

The GIAS specification defines a number of data types that are specific
to the GIAS. The definitions of the specific types are given in the following
sections.

2.2.2.1 Genera Datatypes

The GIAS defines a number of simple data types.

2.2.2.1.1 LibraryList, RequestList, ManagerList

t ypedef sequence < Library > LibrarylList;
t ypedef sequence < string > ManagerlLi st;
t ypedef sequence < Request > RequestLi st

t ypedef sequence < UseMdde > UseMbdeli st;

The GIAS specification defines four convenience structures that are a
sequence of other defined types. LibraryList contains a sequence of references

of type Library. ManagerList contains a sequence of strings, where each
strings is a name of a Manager type. RequestL ist contains a sequence of
references of type request.UseModeL ist contains a sequence of UseM odes
(see below for the definition of UseMode).

2.2.2.1.2 LibraryDescription

struct LibraryDescription
{
string library_name;
string library _description;

H

The LibraryDescription structure contains the name of a specific library
instance in the string library_name . The string library_description contains a
human readable description of the library and its holdings.

2.2.2.1.3 Query
typedef string Query;

The structure Query is a string that holds a query for submittal to a
catalog. The Boolean Query Syntax (BQS) which defines the syntax of this
string is defined in Chapter 3.

2.2.2.1.4 UseMode
typedef string UseMode;

UseMode is astring that describes a purpose or intended use of a data set
or product. It is used by the AccessManager to support client requests and
monitoring of the readiness of products for their use.

2.2.2.2 RegionData

struct Regi onDat a
{

CGeoRegi on boundari es;
UCO : Na neVal uelLi st regi on_dat a_header;
any tile_data;

};

10

The RegionData structure is used to contain a“tile” of geospatial data. A
tile is defined to be a geospatially defined subsection of a product or data set.
Itsintended use isto allow aclient to access a data set or product as a series of
tiles rather then as a monolithic data set.

The RegionData structure is intended to be mostly self describing. It
contains three related elements: the GeoRegion boundaries defines the
geospatial extent of the data contained in this GeoRegion, the NameV alueL ist
region_data_header contains any information to describe the datain the
GeoRegion (metadata) and the type any tile_data contains the actual data of
the tile. The types of data contained in the type any and the specific metadata
that describe it are defined in the appropriate GIAS profile.

2.2.2.3 QueryResults

t ypedef | ong Nodel D,
t ypedef | ong Edgel D,

struct Node
Nodel D i d;
string attribute nane;
any val ue;
s
struct Edge
{
Edgel D i d;

Nodel D start _node;
Nodel D end_node;

string rel at _narne;
string rel at_type;

}

t ypedef sequence < Node > Nodeli st ;
t ypedef sequence < Edge > Edgeli st;

struct DAG

NodelLi st nodes;
EdgelLi st edges;
}s

t ypedef sequence < DAG > QueryResults;
The QueryResults structure is used to contain a collection of results from

acatalog query. Each individual result in this collection contains metadata that
describes a data set or product and a reference to that data set or product in the

11

form of a Product or GeoProduct reference (See section 2.3.2 and 2.3.3) The
following sections define the form and usage of the QueryResults structure.

The QueryResult structure is composed of a sequence of directed acyclic
graphs (DAG’s). Each DAG contains two types of information: data elements
(‘nodes’) and relationships among these elements (“edges’). The nodes are
contained in the sequence NodeList and the edges are contained in the
sequence EdgeL.ist.

Each node contains an attribute-value pair. The name of the attribute is
contained in the string attribute_name and the value is contained in the type
any value . Along with this attribute-value pair isaNodelD (atype long)
which uniquely identifies this node in this DAG.

The relationships among the nodes are defined by the edges. Each edge
defines a relationship between two nodes. Each Edge structure contains the
Nodeld's of the two Nodes being related (start_node and end_node), a string
relat_type containing the type of relationship that exists between these two
Nodes and a string relat_name that gives a name to this instance of
relationship. Also contained in the Edge structure is an Edgeld (atype long)
that uniquely identifies this edge in this DAG.

The set of results from a catalog query is expressed in a QueryResults
structure by applying the following rules:

1) Each result consists of an identifier of a data set or product and a set of
metadata elements. The identifier will be in the form of a Product or
GeoProduct reference whichever is appropriate for the data set. (See sections
2.3.2 and 2.3.3)) The metadata elements will each consist of an attribute name
and atype and value for that attribute.

2) Each result is placed in itsown DAG.

3) Each metadata element is placed in its own node (a M etadata Node”) by
setting the attribute_name of the node to reflect the name of the metadata
element and by setting the value of the node to reflect the type and value of
that metadata element. To insert the identifier into anode (* an Identifier
Node”) , the attribute_name of the node should be set to “GIAS_PRODUCT”
and its value should be set to a Product or GeoProduct reference as
appropriate. Every DAG in a QueryResults will contain one Identifier Node.

4) The number, type and name for the relationshipsin a DAG are dependent
on the data model (if any) that underlies the database the generated the result
and are thus implementation dependent. However, there are two broad
categories of results, distinguished by their use of relationships.

In the first category (“data set like”) aresult ssimplies mirrors the
physical implementation of the data base from which it was extracted In a data

12

set like result, only simple relationships like “Belongsto List” are needed. All
metadata elements are considered to describe the product or data set identified
in the result. All interpretation of the attributes and their relationships if any
are the responsibility of the receiving client. Most simple catalog results will
be of thisform. The result is basically an unordered list of attribute-value
pairs.

In the second category (“data model like") aresult is actually a projection
of the data model that the database describes. In this category potentially
many relationships of many types could be defined in order to convey how
this data set reflects the data model. The result is a graph containing attribute-
value pairs as nodes with relationships defined among these nodes.

In both cases, the metadata elements could be identical, the cases
differing only by the inclusion of the relationships.

The choice of data set or data model like results is made independently
by the client or server. In order to allow maximum flexibility in the design and
implementation of servers and clients while still ensuring interoperability, a
consistent interpretation of the QueryResults structure must be made in four
different scenarios:

Client expects Server delivers Notes
Data set Data set
Data set Data model Client ignores unknown relationships
Data model Data set Client reconstructs data model
Data model Data model

The client is responsible for determining which of the scenariosisin effect. It
must be able to do so by examining the DAG it has received and determining
whether the server has sent a data set or a data model like result.

The following sections define the use of a QueryResults in data set and
data model like forms.

2.2.2.3.1 Data set form

13

A result expressed in data set form is simply an unordered list of attribute
value pairs. The only relationships allowed are those required to express
multiple values of attributes. The result is placed in a DAG by placing each
metadata element of the result into its own Node (“a Metadata Node”). The
type and value of that node are the same type and value of the element of the
list. The placement of the Nodes into the NodeL ist is arbitrary.

The only allowed relationship in a data set like result is that required to
express a metadata element that has multiple values (cardinality of 1: N). In
this case, an extraNode is created (“aList Node”). It will be given the
attribute_name of “GIAS LIST” and itsvalue will be set to atype unsigned

short with a value of the number of Nodes thislist includes. Each instance of a
value of the multi-valued metadata element is placed in its own Node with the
appropriate attribute_name and value. (“aList Element Node”) A
relationship is created between the List Node and each of the List Element
Nodes. Each relationship will have the start_node set to the List Node and the
end_node to one of List Element Nodes. The relationship typerelat_type of
each relationship will be set to “CONTAINS’. The relationship name
relat_name will be an empty string.

A client can identify a data set like result by searching for List Nodes in
the Nodes of the QueryResults. A data set like result will have O (zero) or
more List Nodes and only relationships of type “CONTAINS’ that include
one of the List Nodes.

In the example below, a single record with three metadata elements
(CountryCode, Classification and Target) is converted into a DAG. One of the
metadata elements (Target) is multi-valued. The DAG is created by creating 7
Nodes (1 Identifier Node, 1 List Node and 5 Metadata Nodes) and 3
relationships (one for each instance of a Target value). The value contained in
the List Node is 3 indicating the 3 instances of Targets.

Imagel D CountryCode Classification Target
1234 usS) T1,T2,T3
|dentifier Node List Node

\

%6

Fig 9. Simple DAG with Multi-valued Element

2.2.2.3.2 Data model form

A result in data model like form is intended to be a projection of the data
model that underlies the database from which it was extracted. As such it will
contain data types, relationship types and relationship names derived from that
data model and thus is implementation dependent. However, in order to
support interoperability, all clients should be able to perform the following
with an arbitrary data model like QueryResults:

14

1) For each DAG, find all Nodes which are directly connected to the Identifier
Node. These are the metadata elements that directly describe the data set or
product.

2) Ignore without error any unknown data types, relationship types and
relationship names.

2.2.2.4 RequestDescription

struct RequestDescription

{

string user_info;

string request_type;

string request _info;

UCQO : NaneVal ueli st request details;
b

The structure RequestDescription is used to describe the type and details of arequest
submitted for processing.

The RequestDescription structure is composed of 4 elements. The string user_info contains
amessage supplied by the submitting client, the contents of this message are completely
determined by the client. The string request_type identifies the operation that was used to submit
the request. The values and syntax of this element is defined in the appropriate GIAS profile.
The string request_info contains any message the processing server wishes to return to the client
concerning the specific request. It isintended to be human readable and is implementation
dependent. The NameValuelList request_details isintended describe the parameters of the
operation that generated this request. The specific names and values in this element are
dependent on the operation that initiated this request and will be defined in the appropriate GIAS
profile.

2.3 Interfaces

2.3.1 Library

interface Library

{
Manager Li st get nanager types ();

UCQO : NaneVal ueli st access criteria (in string nmanager_type)
rai ses (UnknownManager Type);

15

Manager get _manager (in string nmanager_type, in
UCQO : NaneVal ueli st access criteria)

rai ses (UnknownManager Type, BadAccessCriteria,
BadAccessVal ue) ;

Li braryDescri pti on about ();

The Library interface serves as the starting point for any interaction with
the rest of thelibrary. All capabilities of alibrary system are accessed through
the manager objects it supports. The Library interface is the mechanism by
which a client discovers and requests access to manager objects. The
following operations are defined on the Library interface:

2.3.1.1 get_manager_types

Manager Li st get nanager types();

This operation allows a client to discover which managers are supported
by a particular GIAS library. A ManagerList structure (section 2.2.2.1.1) is
returned from a successful invocation of this operation. The ManagerList
returned by this operation will contain the names of all manager types
supported by this implementation. The manager names contained in this list
are used with the access criteria and get_manager operations defined below to
specify the type of manger desired.

No user-defined exceptions are defined for this operation.

2.3.1.2 access criteria

UCQO : NaneVal ueli st access criteria (in string nmanager_type)
rai ses (UnknownManager Type);

This operation allows a client to discover the attributes the client must
provide to be allowed access to a given type of manager. The client invokes
this method, supplying the type of manager desired in the parameter
manager _type. A successful invocation returns a NameV aluelL ist containing
the names of each attribute the client must correctly supply to be given access
to a manager of the type specified. The value element of each NameValuein
this list will contain one of two possible values expressed as a string:
“MANDATORY” for an attribute that must be supplied for access to be
granted or “OPTIONAL” for an attribute that could be supplied. This
NameValuelList is passed into the get_manager operation to actually gain
access to the requested manager object (see below)

16

The exception UnknownManagerType is returned by this operation if the
client has supplied a value of manager_type unknown or unsupported by this
implementation.

2.3.1.3 get_manager

Manager get _rmanager (in string nmanager _type, in
UCQO : NaneVal ueli st access criteria)
rai ses (UnknownManager Type, BadAccessQriteria, BadAccessVal ue);

This operation is arequest to be given access to a manager object. The
client supplies the type of manager desired in manager_type and a
NameV aluel ist containing acceptable values for each mandatory attribute in
access _criteria. (Seethe get_manager_types and access criteria operations
for details on determining acceptable values). A successful invocation will
return areference to an object of type Manager (see section 2.3.4). This
reference should then be narrowed (cast) into areference to an object of the
specific manager type requested in manager _type . It can be assumed that all
manager types supported by a GIAS implementation are derived (inherit) from
type Manager. The client must know the correlation between the names given
in the ManagerList and the object type to which that corresponds. Repeated
callsto get_manager by the same client will result in new instances of
Managers being returned. Also calls to get_manager by different client will
always result in different Managers references being returned. That is the
library system will not force clients to share Managers.

The exception UnknownManagerType is returned by this operation if the
client has supplied a value of manager_type unknown or unsupported by this
implementation. Supplying an unknown criteriain access _criteria will result
in the BadA ccessCriteria exception. Supplying an unacceptable value for an
OPTIONAL attribute in access criteriawill result in the BadAccessValue
exception. Supplying incorrect or unacceptable values for one or more
MANDATORY attributesin access criteria will result in the
NO_PERMISSION system exception being returned. (See Appendix B for list
of other system exceptions)

2.3.1.4 about

Li braryDescri pti on about ();
This operation returns some descriptive information about the library. A

successful invocation of this operation will return a populated
LibraryDescription structure. (See section 2.2.2.1.2)

2.3.2 Product

17

i nterface Product

{
}

The Product interface serves a unique handle or identifier for a data set or
product that residesin alibrary system. No methods are defined on this
interface, its sole purpose isto serves as an identifier. All GIAS operations
that require the identification of a specific data set or product, identify that
data set or product by using the Product reference assigned to it.

Since there are no methods defined on this interface, no exceptions are
defined.

2.3.3 GeoProduct

i nterface GeoProduct : Product

{
}

2.3.4 Manager

The GeoProduct interface serves the same purpose as the Product
interface from which it is derived: a unique handle or identifier for a data set
or product that resides in alibrary system. It extends this definition by
requiring that data sets or products referred to with GeoProduct references
have some type of geospatial coordinate system as a basis. GIAS operations
that can successfully operate on data sets that do not have a geospatial
coordinate systems as a basis will use Product references in their operation
signatures. GIA S operations that requir e data sets with a geospatial
coordinate system basis will use GeoProduct references in their operation
signature. All operations that use Product in their signatures must also accept
GeoProduct.

Since there are no methods defined on this interface, no exceptions are
defined.

i nterface Manager

{

PropertyLi st get_properties (in UCQO : NaneLi st
desired_properties)
rai ses (UnknownProperty);

Li braryList get _libraries ();

b

18

The Manager interface serves as the (abstract) root for all types of
manager objectsin the GIAS definition. It is abstract in the sense that a
concrete Manager object by itself would serve no real purpose. Its real
purpose is to define certain operations that are common to all types of
manager objectsin GIAS. Because these operations are common to all
manager types, a client can use these common methods to interact with
managers of unfamiliar type. The Manager interface defines the following
operations:

2.3.4.1 get_properties

PropertyLi st

get _properties (in UCO : NaneLi st

desi red_properties)
rai ses (UnknownProperty);

2.3.4.2 get_libraries

This operation allows a client to discover the properties and the current
values of those properties that describe a Manager. A client supplies the
names of the properties of interest in the NameL.ist desired_properties. A
successful invocation of this operation returns a PropertyList (see section
2.2.1.1) which contains the current values of the requested properties. The
PropertyList will contain one NameV alue pair for each element supplied in the
NamelList desired_properties . The name in that NameValue pair will be the
name as specified in desired_properties . The value associated with that name
will be the current value of that property. The specific set of properties
supported by a Manager is defined in the appropriate GIAS profile. However,
the property “PropertyNames” is supported by all GIAS Managers. Invoking
this method with the property “PropertyNames” as an element of the
NamelList desired_properties will, upon successful completion, return a
PropertyList containing a single NameValue pair. This single entry will have
the name “PropertyNames” and the value will be of type UCO::NameL.ist
where the elements of the NameL.ist are all the properties supported or known
to this Manager.

The exception UnknownProperty will be returned if the client has
supplied one or more properties unknown or unsupported by this Manager.
The exception_details element of the exception_info structure (See section
2.4.1) returned with the UnknownProperty exception will contain an
explanation containing the names of all the unknown or unsupported
properties supplied which caused the exception.

Li braryList get _libraries ();

19

This operation allows a client to determine which GIAS based library
system(s) this Manager supports. A successful invocation of this operation
will return aLibraryList structure (See section 2.2.2.1.1). This structure will
contain an object reference of type Library for each library this Manager
supports. There will always be at least one Library object reference in this list.

There are no user-defined exceptions defined on this operation.

2.3.5 RequestManager

i nterface Request Manager : Manager

{

}

Request Li st |ist_active requests ();

voi d set_default_tineout (in |Iong new default)
rai ses (InplementationLimt);

| ong get _default _tinmeout ();

void set _timeout (in Request request, in long new lifetine)
rai ses (UnknownRequest, InplenentationLimt);

voi d del ete request (in Request request)
rai ses (UnknownRequest);

The RequestM anager interface serves to define operations common to all
managers that use Request objects as part of their operations. Thisinterfaceis
abstract, like the Manager interface from which it is derived. Also like the
Manager interface, these common operations allow a client to interact with
unfamiliar forms of RequestM anagers. The operations defined on
RequestM anager serve to allow clients to identify active requests and control
their lifetimes.

Each Request being managed by a RequestM anager has a limited
lifetime. Thislifetime is considered to begin when the processing it represents
reaches aterminal state and ends when the timeout set for that particular
request has elapsed. (See section 2.2.1.3 for a description of terminal states)
After a Requests lifetime has expired a RequestM anager is free to (but is not
required to) delete that Request as well as all resources associated with that
Request.

The RequestM anager interface defines these operations:

2.3.5.1 list_active _requests

20

Request Li st |ist_active requests ();

This operation allows a client to determine what requests are being
managed by this RequestM anager. A successful invocation of this operation
will return a RequestList structure (See section 2.2.2.1.1) . This structure will
contain an object reference of type Request for each Request currently being
managed by this RequestM anager.

2.3.5.2 set_default_timeout

voi d set_default_timeout (in |long new default)
raises (InplenmentationLimt);

This operation allows a client to set a default value (in seconds) of the
lifetime of the Requests being Managed by this RequestM anager. The client
supplies the desired lifetime in new_default. Following successful invocation
of this operation, all new Requests managed by this RequestM anager will
have alifetime of new_default seconds. This operation has no effect on the
lifetime of Requests that already exist at the time of invocation of this
operation.

The exception ImplementationLimit will be returned if the client attempt
to set adefault lifetime that exceeds the maximum lifetime supported by this
RequestM anager implementation. The value of this maximum is
implementation dependent and may vary over time.

2.3.5.3 get_default_timeout

2.3.5.4 set_timeout

21

| ong get _default_tinmeout ();

This operation allows a client to determine the current default lifetime for
Requests initiated by this RequestM anager. Successful invocation of this
operation will return the current default lifetime of Requests in seconds.

void set _tinmeout (in Request request, in long newlifetine)
rai ses (UnknownRequest, InplenentationLimt);

This operation allows a client to modify the currently set value for the
lifetime of a Request. The client supplies the Request that isto have its
lifetime modified in request and the desired value of its new lifetime in
new_lifetime. Following successful invocation of this operation, the lifetime of
Request request will be new_lifetime seconds. If the Request request has not
reached aterminal state (See section 2.2.1.3), the lifetime will be new_lifetime

seconds beginning from the time it reaches aterminal state. If Request request
isalready in aterminal state when this operation isinvoked (that is a portion
of its lifetime has already elapsed), the lifetime of Request request will be
new_lifetime seconds beginning from the time the set_timeout operation
successfully completes.

The exception UnknownRequest will be returned if the client has
supplied a Request unknown to this instance of RequestManager. The
exception ImplementationLimit will be returned if the client attempt to set a
default lifetime that exceeds the maximum lifetime supported by this
RequestM anager implementation. The value of this maximum is
implementation dependent and may vary over time

2.3.5.5 delete request

voi d del ete request (in Request request)
rai ses (UnknownRequest);

This operation allows a client to destroy a Request and free all resources
associated with that Request. A client supplies the Request to be destroyed in
request. Following successful invocation of this operation, the
RequestManager is free to (but is not required to) immediately destroy
Request request and to free all resources associated with that Request

The exception UnknownRequest will be returned if the client has
supplied a Request unknown to this instance of RequestM anager. After the
RequestM anager has destroyed the Request, attempts to invoke operations on
that Request will return the OBJECT_NOT_EXIST system exception.

2.3.6 AccessManager

i nterface AccessManager

{

UseMbdeLi st |ist_use nodes ();

bool ean check _availability (in Product product, in UseMde
use_node)
rai ses (UnknownProduct, UnknownUseMbde, BadUseMbde);

MakeAvai | abl eRequest nake avail able (in Product product, in

UseMbde use node, out |ong del ay)
rai ses (UnknownProduct, UnknownUseMbde, Bad UseMbde);

The AccessManager is an abstract interface that serves to define
operations common to managers that allow clients to determine and control

22

the “availability” of adata set or product. “availability” is defined as the
readiness of a data set or product to be used by the other operations on the
manager. An AccessManager describes “availability” by defining one or more
UseModes. A UseMode is a state or condition of a data set or product that
indicates its readiness to be used by the AccessManager for a specific purpose.
The following operations are defined on AccessM anager:

2.3.6.1 list_use_mode

UseMbdeLi st |ist_use nodes ();

This operation allows a client to discover the UseM odes supported by
this AccessManager. A successful invocation of this operation returns a
UseModeL ist containing all of the UseM odes supported or known to this
AccessM anager.

There are no user-defined exceptions defined on the operation.

2.3.6.2 check_availability

bool ean check _availability (in Product product, in UseMde
use_node)
rai ses (UnknownProduct, UnknownUseMbde, BadUseMbde);

This operation allows a client to determine whether a data set or product
isready for a specific purpose. A client indicates the data set or product of
interest and its desired use by supplying both areference of type Product in
product and itsintended use as a UseMode in use_mode. A successful
invocation of this operation will return a boolean that indicates whether or not
the requested data set or product is currently available for the requested use. A
boolean value of “TRUE” indicates the product is available. A boolean value
of FALSE indicates that product is not currently available for the requested
use. This operation does not effect the current availability of the requested
data set or product.

The exception UnknownProduct will be returned if the client supplied a
product reference unknown to this AccessManager. The exception
UnknownUseM ode will be returned if the client supplied a UseM ode
unknown or unsupported by this AccessManager. The exception
BadUseMode is returned if the client supplied a UseM ode that is inappropriate
or unsupported for the particular data set or product supplied in product

2.3.6.3 make available

23

MakeAvai | abl eRequest nake avail able (in Product product, in
UseMbde use node, out |ong del ay)
rai ses (UnknownProduct, UnknownUseMbde, BadUseMbde);

This operation allows a client to submit arequest to make a product
available for a specific purpose. A client indicates the data set or product of
interest and its desired use by supplying both areference of type Product in
product and itsintended use as a UseMode in use_mode. A successful
invocation of this operation returns two elements: in delay an estimate of the
time (in seconds) it will take to place the specified product into the requested
UseMode and a reference to a MakeAvailableRequest (see section 2.3.23).

The exception UnknownProduct will be returned if the client supplied a
product reference unknown to this AccessManager. The exception
UnknownUseM ode will be returned if the client supplied a UseM ode
unknown or unsupported by this AccessManager. The exception
BadUseMode is returned if the client supplied a UseM ode that is inappropriate
or unsupported for the particular data set or product supplied in product

The BadUseM ode exception will also occur if the requested data set or
product can never be made available in the requested UseM ode.

2.3.7 GeoDataSetMqr

i nterface GeoDat aSet Myr: Request Manager , AccessManager
{

D ssem nat eRequest di ssemnate (in Product product, in
UCO : Fi | eLocation location, in PropertyList properties)
rai ses (UnknownProduct, BadLocation, UnknownProperty,
BadPr opert yVal ue) ;

D ssem nat eRequest get _subgeo (i n GeoProduct product, in
GeoRegion region, in UCQ: FilelLocation |ocation, in
PropertyLi st properties)

rai ses (UnknownProduct, BadGeoRegi on, BadLocati on,
UnknownPr operty, BadPropertyVal ue);

}

The GeoDataSetMgr is a concrete interface that provides operations that
allow aclient to request that a specific data set or product (or a geographically
defined subsection of one) be delivered as afile to a specified location. The
following operations are defined on this interface:

2.3.7.1 disseminate

D ssem nat eRequest di ssemnate (in Product product, in
UCO : Fi | eLocation location, in PropertyList properties)
rai ses (UnknownProduct, BadLocation, UnknownProperty,
BadPr opert yVal ue) ;

24

This operation allows a client to request the delivery of a complete data
set or product as afile to a specified location. The client indicates the data set
or product of interest by supplying the product reference for the desired data
set in product . The client also indicates the location to which the data set is to
be delivered by supplying a FileL ocation structure in location. The client also
describes any properties that further refine, effect or amplify this request by
supplying their names and values in the ProperyL.ist properties. The properties
that are available or applicable to this operation are defined in the appropriate
GIAS profile. A successful invocation of this operation will return areference
to a DisseminateRequest object. (see section 2.3.17).

The exception UnknownProduct will be returned if the client supplied a
product reference unknown to this GeoDataSetMgr. The exception
BadL ocation will be returned if the client supplies alocation description
which is syntactically invalid, incomplete or specifies alocation unknown or
inaccessible by the GeoDataSetM gr. This does not require the
GeoDataSetMgr to determine the validity of the user_name - password
combination specified in location or the availability of space at location to
return successfully. The exception UnknownProperty will be returned if the
client has supplied one or more properties unknown or unsupported by this
Manager. The exception_details element of the exception_info structure (See
section 2.4.1) returned with the UnknownProperty exception will contain an
explanation containing the names of all the unknown or unsupported
properties supplied which caused the exception. The exception
BadPropertyValue isreturned if the client has supplied one or more values for
properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the BadPropertyV alue exception will contain
an explanation containing the names and values of all the properties supplied
which caused the exception as well as a description of the appropriate or
acceptable values for those properties.

2.3.7.2 get_subgeo

25

D ssem nat eRequest get _subgeo (i n GeoProduct product, in
GeoRegion region, in UCQ: FilelLocation |ocation, in
PropertyLi st properties)

rai ses (UnknownProduct, BadGeoRegi on, BadLocati on,
UnknownPr operty, BadPropertyVal ue);

This operation allows a client to request the delivery of a geographically
defined subsection of data set or product as afile to a specified location. The
client indicates the data set or product of interest by supplying the product
reference for the desired data set in product . The client indicates the desired
geographic subsection by supplying a GeoRegion in region . The client aso
indicates the location to which the data set is to be delivered by supplying a

FileL ocation structure in location. The client also describes any properties that
further refine, effect or amplify this request by supplying their names and
values in the ProperyList properties. The properties that are available or
applicable to this operation are defined in the appropriate GIAS profile. A
successful invocation of this operation will return areferenceto a
DisseminateRequest object. (see section 2.3.17).

The exception UnknownProduct will be returned if the client supplied a
product reference unknown to this GeoDataSetMgr. The exception
BadGeoRegion will be returned if the client supplies a GeoRegion that is
incomplete or describes aregion that is not partially or completely contained
in the specified product. The exception BadL ocation will be returned if the
client supplies a location description which is syntactically invalid, incomplete
or specifies alocation unknown or inaccessible by the GeoDataSetMgr. This
does not require the GeoDataSetMgr to determine the validity of the
user_name - password combination specified in location or the availability of
space at location to return successfully. The exception UnknownProperty will
be returned if the client has supplied one or more properties unknown or
unsupported by this Manager. The exception_details element of the
exception_info structure (See section 2.4.1) returned with the
UnknownProperty exception will contain an explanation containing the names
of all the unknown or unsupported properties supplied which caused the
exception. The exception BadPropertyValue is returned if the client has
supplied one or more values for properties which are inappropriate or exceed
the allowed or expected values of that property. The exception_details
element of the exception_info structure (See section 2.4.1) returned with the
BadPropertyV alue exception will contain an explanation containing the names
and values of all the properties supplied which caused the exception as well as
a description of the appropriate or acceptable values for those properties.

2.3.8 GeoFeatureMgr

i nterface GeoFeat ur eMyr: Request Manager , AccessManager

Feat ur eRequest get features (in GeoProduct product, in
UCO : Fi | eLocation | ocation, in PropertyList properties)
rai ses (UnknownProduct, BadLocation, UnknownProperty,
BadPr opert yVal ue) ;

The GeoFeatureMgr is a concrete interface that provides operations that
allow aclient to request that a thematically defined subsection of a specific

26

data set or product be delivered as afile to a specified location. The following

operations are defined on this interface:

2.3.8.1 get_features

Feat ur eRequest get features (in GeoProduct product, in
UCO : Fi | eLocation | ocation, in PropertyList properties)
rai ses (UnknownProduct, BadLocation, UnknownProperty,
BadPr opert yVal ue) ;

This operation allows a client to request the delivery of athematic
subsection or slice of a complete data set or product as afile to a specified
location. The client indicates the data set or product of interest by supplying
the product reference for the desired data set in product . The client also
indicates the location to which the data set is to be delivered by supplying a
FileL ocation structure in location. The client describes the particular set of
features or thematic description desired by supplying their names and values
in the ProperyList properties . In addition to those properties, the client also
describes any other properties that further refine, effect or amplify this request
by supplying their names and values in the ProperyList properties. The
properties and the features or thematic descriptions that are available or
applicable to this operation are defined in the appropriate GIAS profile. A

successful invocation of this operation will return areference to a

FeatureRequest object. (see section 2.3.18).

The exception UnknownProduct will be returned if the client supplied a

product reference unknown to this GeoDataSetMgr. The exception

BadL ocation will be returned if the client supplies alocation description
which is syntactically invalid, incomplete or specifies alocation unknown or

inaccessible by the GeoDataSetM gr. This does not require the
GeoDataSetMgr to determine the validity of the user_name - password

combination specified in location or the availability of space at location to
return successfully. The exception UnknownProperty will be returned if the
client has supplied one or more properties unknown or unsupported by this
Manager. The exception_details element of the exception_info structure (See
section 2.4.1) returned with the UnknownProperty exception will contain an

explanation containing the names of all the unknown or unsupported
properties supplied which caused the exception. The exception

BadPropertyValue isreturned if the client has supplied one or more values for
properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the BadPropertyV alue exception will contain
an explanation containing the names and values of all the properties supplied
which caused the exception as well as a description of the appropriate or

acceptable values for those properties.

27

2.3.9 CreationMgr

I nterface O eati onMyr: Request Manager

{

Oreati onRequest create (in UGO : FilelLocation new product, in
DAG creation_attributes, in PropertyList properties)

rai ses (BadLocation, UnknownQOeationAttribute,

BadCreati onAttri but eVal ue, UnknownProperty, BadPropertyVal ue);

O eati onRequest netadata create (in DAG creation_attributes, in
PropertyList properties)

rai ses (UnknownQOreationAttribute, BadOQreati onAttri buteVal ue,
UnknownPr operty, BadPropertyVal ue);

s
The CreationMgr interface allows a client to nominate a data set or
product to alibrary(s) for inclusion in those libraries holdings. This interface
also allows a client to nominate the meta-data of a data set or product for
inclusion without supplying the data set or product itself. Thisinterface
defines the following operations:
2.3.9.1 create

Oreati onRequest create (in UG : FilelLocation new product, in
DAG creation_attributes, in PropertylList properties)

rai ses (BadLocation, UnknownQOeationAttribute,

BadCreati onAttri but eVal ue, UnknownProperty, BadPropertyVal ue);

This operation allows a client to nominate a data set or product for
inclusion in the holdings of alibrary(s). The data set or product nominated
must be accompanied by the appropriate metadata. The client nominates a data
set or product by supplying a FileL ocation new_product that points to the
data set or product being nominated. The metadata that must accompany this
nomination may be supplied in one of two ways: 1) the file at the location
new_product contains the data set and all the appropriate metadata 2) the file
at location new_product contains the data set and some (to include none) of
the metadata and creation_attributes contains the remainder of the
appropriate metadata. (See section 2.2.2.3 for a details on the DAG datatype).
If the first method of metadata submission is chosen aNULL value is supplied
for creation_attributes . All metadata for the nominated product is then
expected to bein file at location new_product If anon-NULL valueis
supplied for creation_attributes this indicates that the second metadata

28

29

submission method has been chosen and that the metadata for the nominated
product is to be found in the file at location new_product and in the DAG
creation_attributes. If the same metadata element appears in both the file and
in the DAG, the value appearing in the DA G takes precedence and will be
used for the nomination. Note that this requires serversto “edit” products
submitted with conflicting metadata or risk serving out products with metadata
that doesn’t match that in the catalog. The definition of the metadata elements
(their names and acceptable values or ranges, whether mandatory or optional
and their mapping into and out of various file formats that may be nominated)
to be described in the file or in the DAG are defined in the appropriate GIAS
profile. The client also describes any properties that further refine, effect or
amplify this request by supplying their names and values in the ProperyList
properties. (The properties that are available or applicable to this operation are
defined in the appropriate GIAS profile.) A successful invocation of this
operation will return a reference to a CreationRequest object (see section
2.3.19).

The exception BadL ocation will be returned if the client supplies a
location description which is syntactically invalid, incomplete or specifies a
location unknown or inaccessible by the GeoDataSetMgr. This does not
require the GeoDataSetMgr to determine the validity of the user_name -
password combination specified in location or the availability of space at
location to return successfully. The exception UnknownCreationAttribute will
be returned if the client has supplied a metadata element in the DAG
creation_attributes that is unknown or unsupported by this CreationMgr.
Note that a server will ignore unknown attributes in a file nominated. The
exception_details element of the exception_info structure (See section 2.4.1)
returned with the exception UnknownCreationAttribute will contain an
explanation containing the names of all the unknown or unsupported elements
supplied which caused the exception. The exception
BadCreationAttributeValue will be returned if the client supplies a metadata
element, whether in afile or in the DAG creation_attributes , with a
inappropriate or invalid value. The exception_details element of the
exception_info structure (See section 2.4.1) returned with the exception
BadCreationAttributeValue will contain an explanation containing the names
and values of all the metadata elements supplied which caused the exception
as well as adescription of the appropriate or acceptable values for those
elements. The exception UnknownProperty will be returned if the client has
supplied one or more properties unknown or unsupported by this
CreationMgr. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the UnknownProperty exception will contain
an explanation containing the names of all the unknown or unsupported
properties supplied which caused the exception. The exception
BadPropertyValue is returned if the client has supplied one or more values for
properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure

(See section 2.4.1) returned with the BadPropertyV alue exception will contain
an explanation containing the names and values of all the properties supplied
which caused the exception as well as a description of the appropriate or
acceptable values for those properties.

2.3.9.2 metadata create

O eati onRequest netadata create (in DAG creation_attributes, in
PropertyLi st properties)

rai ses (UnknownQreationAttribute, BadOQreati onAttri buteVal ue,
UnknownPr operty, BadPropertyVal ue);

This operation allows a client to nominate the metadata of a data set or
product for inclusion in alibrary(s) without supplying the data set or product
itself. The client nominates the metadata by supplying all metadata elementsin
the DAG creation_attributes. The client also describes any properties that
further refine, effect or amplify this request by supplying their names and
values in the ProperyList properties. (The properties that are available or
applicable to this operation are defined in the appropriate GIAS profile.) A
successful invocation of this operation will return areferenceto a
CreationRequest object (see section 2.3.19).

The exception UnknownCreationAttribute will be returned if the client
has supplied a metadata element in the DAG creation_attributes that is
unknown or unsupported by this CreationMgr. The exception_details element
of the exception_info structure (See section 2.4.1) returned with the exception
UnknownCreationAttribute will contain an explanation containing the names
of all the unknown or unsupported elements supplied which caused the
exception. The exception BadCreationAttributeValue will be returned if the
client supplies a metadata element in the DAG creation_attributes with a
inappropriate or invalid value. The exception_details element of the
exception_info structure (See section 2.4.1) returned with the exception
BadCreationAttributeValue will contain an explanation containing the names
and values of all the metadata elements supplied which caused the exception
as well as a description of the appropriate or acceptable values for those
elements. The exception UnknownProperty will be returned if the client has
supplied one or more properties unknown or unsupported by this
CreationMgr. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the UnknownProperty exception will contain
an explanation containing the names of all the unknown or unsupported
properties supplied which caused the exception. The exception
BadPropertyValueis returned if the client has supplied one or more values for
properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the BadPropertyV alue exception will contain

30

an explanation containing the names and values of all the properties supplied
which caused the exception as well as a description of the appropriate or
acceptable values for those properties.

2.3.10 CatalogAccessMgr

i nterface Catal ogAccessMyr: Request Manager
{

QueryRequest submt _query (in string product _type, in Query
query, in PropertylList properties)

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownPr operty, BadPropertyVal ue);

H t Count Request hit_count (in string product_type, in Qery
query, in PropertylList properties)

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownPr operty, BadPropertyVal ue);

1

The CatalogAccessMgr allows a client to submit queries to search the
catalog of holdings of a GIAS library. Each Catal ogA ccessM gr manages one
or more sub-catalogs. Each subcatalog is composed of all the holdings of the
same product type. A CatalogAccessMgr will therefore have one sub-catalog
for each product typeinitslibrary. The CatalogAccessMgr defines the
following operations:

2.3.10.1 submit_query

31

QueryRequest submt _query (in string product _type, in Query
query, in PropertylList properties)

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownProperty, BadPropertyVal ue);

This operation allows a client to submit a query to search a catalog of
products. The client indicates the product type of interest by supplying the
desired value in product_type. (The specific product types available and
acceptable to a CatalogAccessMgr are defined in the appropriate GIAS
profile.) The query, which defines the selection criteria for the products of
interest, is defined by the Query query. The syntax and details of the Query
data type are explained in Chapter 3. The client also describes any properties
that further refine, effect or amplify this request by supplying their names and
valuesin the ProperyList properties. (The properties that are available or
applicable to this operation are defined in the appropriate GIAS profile.) A

2.3.10.2 hit_count

successful invocation of this operation will return areference to a
QueryRequest object. (see section 2.3.21).

The exception UnknownProductType will be returned if the client has
supplied a data type unknown or unsupported by this CatalogAccessMgr. The
exception BadQuery will be returned if the Query specified by query is
syntactically invalid. The exception BadQueryAdttribute will be returned if the
guery contains an attribute unknown to the CatalogAccessMgr. The
exception_details element of the exception_info structure (See section 2.4.1)
returned with the exception BadQueryAttribute will contain an explanation
containing the names of all the unknown query attributes supplied which
caused the exception. The exception BadQueryVaue is returned if the client
has supplied one or more values for query attributes which are inappropriate
or exceed the allowed or expected values of that attribute. The
exception_details element of the exception_info structure (See section 2.4.1)
returned with the BadQueryV alue exception will contain an explanation
containing the names and values of all the attributes supplied which caused the
exception as well as a description of the appropriate or acceptable values for
those attributes. The exception UnknownProperty will be returned if the client
has supplied one or more properties unknown or unsupported by this
CreationMgr. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the UnknownProperty exception will contain
an explanation containing the names of all the unknown or unsupported
properties supplied which caused the exception. The exception
BadPropertyValue isreturned if the client has supplied one or more values for
properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the BadPropertyV alue exception will contain
an explanation containing the names and values of all the properties supplied
which caused the exception as well as a description of the appropriate or
acceptable values for those properties.

H t Count Request hit_count (in string product_type, in Qery
query, in PropertylList properties)

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownPr operty, BadPropertyVal ue);

This operation allows a client to determine the number of results (“hits’)
that would be returned from a particular query. The operation parameters,
properties and exceptions for this operation are identical in form and meaning
to those of the submit_query operation defined above. A successful invocation
of this operation returns areference to a HitCountRequest object.

32

2.3.11 ArrayAccessMgr

interface ArrayAccessMyr: Request Manager , AccessManager
{

Cet Regi onRequest get _region (in GeoProduct product, in
GeoRegion region, in PropertyList properties)

rai ses (UnknownProduct, BadGeoRegi on, UnknownProperty,
BadPr opert yVal ue) ;

}

The ArrayAccessMgr provides operations that allow a client to request a
geospatial defined subsection of a data set or product to be delivered directly
to the requesting client. The expected use of thisinterface isto allow aclient
to interact with geospatial data sets that are too large to deliver to the client or
are more efficiently handled by offering geospatially indexed random access
to the data set. The operation defined on thisinterface are :

2.3.11.1 get_region

33

Cet Regi onRequest get _region (in GeoProduct product, in
GeoRegion region, in PropertyList properties)

rai ses (UnknownProduct, BadGeoRegi on, UnknownProperty,
BadPr opert yVal ue) ;

This operation allows a client to submit arequest to deliver a geospatially
defined subsection of a data set or product directly to the requesting client.
The client indicates the data set or product of interest in the GeoProduct
product and the specific subsection of that product in the GeoRegion region .
The client also describes any properties that further refine, effect or amplify
this request by supplying their names and values in the ProperyList properties.
(The properties that are available or applicable to this operation are defined in
the appropriate GIAS profile.) A successful invocation of this operation will
return areference to a GetRegionRequest object. (see section 2.3.20).

The exception UnknownProduct will be returned if the client supplied a
product reference unknown to this ArrayAccessMgr. The exception
BadGeoRegion will be returned if the client supplies a GeoRegion that is
incomplete or describes aregion that is not partially or completely contained
in the specified product. The exception UnknownProperty will be returned if
the client has supplied one or more properties unknown or unsupported by this
ArrayAccessMgr. The exception_details element of the exception_info
structure (See section 2.4.1) returned with the UnknownProperty exception
will contain an explanation containing the names of all the unknown or
unsupported properties supplied which caused the exception. The exception
BadPropertyValueis returned if the client has supplied one or more values for

properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the BadPropertyV alue exception will contain
an explanation containing the names and values of all the properties supplied
which caused the exception as well as a description of the appropriate or
acceptable values for those properties.

2.3.12 ProductAccessMgr

i nterface Product AccessMyr: Request Manager
{

Par anet er sRequest get paranmeters (in Product product, in
PropertyList property |ist)
rai ses (UnknownProduct, UnknownProperty, BadPropertyVal ue);

¥

The ProductAccessMgr interface provides operations that allow a client
to determine characteristics about a specific data set or product. Thisinterface
defines the following operation:

2.3.12.1 get_parameters

Par anet er sRequest get paranmeters (in Product product, in
PropertyList property |ist)
rai ses (UnknownProduct, UnknownProperty, BadPropertyVal ue);

This operation allows a client to submit a request to determine the
characteristics of a specific data set or product. The client supplies areference
to the data set of interest in Product product The client also describes any
properties that further refine, effect or amplify this request by supplying their
names and values in the ProperyL.ist properties. (The properties that are
available or applicable to this operation are defined in the appropriate GIAS
profile.) A successful invocation of this operation will return areference to a
ParametersRequest object. (see section 2.3.25).

The exception UnknownProduct will be returned if the client supplied a
product reference unknown to this ProductAccessMgr. The exception
UnknownProperty will be returned if the client has supplied one or more
properties unknown or unsupported by this ProductAccessMgr. The
exception_details element of the exception_info structure (See section 2.4.1)
returned with the UnknownProperty exception will contain an explanation
containing the names of all the unknown or unsupported properties supplied
which caused the exception. The exception BadPropertyValue is returned if
the client has supplied one or more values for properties which are

34

inappropriate or exceed the allowed or expected values of that property. The
exception_details element of the exception_info structure (See section 2.4.1)
returned with the BadPropertyV alue exception will contain an explanation
containing the names and values of all the properties supplied which caused
the exception as well as a description of the appropriate or acceptable values
for those properties.

2.3.13 IngestMgr

i nterface | ngest Myr: Request Manager

{

| ngest Request bul k_pul | (in string product_type, in UCQ:FileSet
data files, in UCQO:AbsTinme since _tine, in PropertylList
property_list)

rai ses(UnknownPr oduct Type, BadLocati on, BadTi ne,

| npl ementationLimt, UnknownProperty, BadPropertyVal ue);

| ngest Request bul k_push(in UCO :FileSet data files, in
PropertyList property list)
rai ses(BadLocati on, UnknownProperty, BadPropertyVal ue);

}

The IngestM gr provides operations that allow alibrary to exchange large
amounts of metadata with another library. The exchange takes place by
exchanging (pushing or pulling) a set of files containing the metadata between
the libraries. The format of the files exchanged and the mapping of those file
formats into and out of the library’ s implementation are outside the scope of
the GIAS. The details of this file format and its mappings will be detailed in
the appropriate GIAS profile. The operations defined on this interface are:

2.3.13.1 bulk_pull

35

| ngest Request bul k_pul | (in string product_type, in UCQ:FileSet
data files, in UCQO:AbsTinme since _tine, in PropertylList
property_list)

rai ses(UnknownPr oduct Type, BadLocati on, BadTi ne,

| npl ement ati onLi mt, UnknownProperty, BadPropertyVal ue);

This operation places a request to pull all metadata concerning a
specified product type since a specified time out of alibrary. The client (the
initiating library) indicates the product type of interest in product_type and a
time. Thisindicates that the initiating library is requesting all metadata

2.3.13.2 bulk_push

concerning products of type product_type that have been entered into the
library since time since_time. The initiating library also indicates the desired
location of the metadata file set that results in FileSet data_files. The
initiating library also describes any properties that further refine, effect or
amplify this request by supplying their names and values in the ProperyList
properties. (The properties that are available or applicable to this operation are
defined in the appropriate GIAS profile.) A successful invocation of this
operation will return a reference to a lngestRequest object. (see section
2.3.26).

The exception UnknownProductType will be returned if the initiating
library has supplied a data type unknown or unsupported by this IngestMgr.
The exception BadL ocation will be returned if the client supplies alocation
description which is syntactically invalid, incomplete or specifies a location
unknown or inaccessible by the IngestMgr. This does not require the
IngestM gr to determine the validity of the user_name - password combination
specified in location or the availability of space at location to return
successfully. The exception BadTime is returned if the initiating library
specified an invalid or inappropriate time. The exception ImplementationLimit
will be returned if the submitted request exceeds the capabilities of the
receiving library implementation. The exception UnknownProperty will be
returned if the client has supplied one or more properties unknown or
unsupported by this IngestMgr. The exception_details element of the
exception_info structure (See section 2.4.1) returned with the
UnknownProperty exception will contain an explanation containing the names
of all the unknown or unsupported properties supplied which caused the
exception. The exception BadPropertyValue is returned if the client has
supplied one or more values for properties which are inappropriate or exceed
the allowed or expected values of that property. The exception_details
element of the exception_info structure (See section 2.4.1) returned with the
BadPropertyV alue exception will contain an explanation containing the names
and values of all the properties supplied which caused the exception as well as
a description of the appropriate or acceptable values for those properties.

| ngest Request bul k_push(in UCO :FileSet data files, in
PropertyList property list)
rai ses(BadLocati on, UnknownProperty, BadPropertyVal ue);

This operation allows a library (the initiating library) to notify another
library (the receiving library) that a block of metadata is available to be
ingested. The initiating library indicates the location of the file set containing
the metadata in FileSet data files. The initiating library also describes any

36

properties that further refine, effect or amplify this request by supplying their
names and values in the ProperyL.ist properties. (The properties that are
available or applicable to this operation are defined in the appropriate GIAS
profile.) A successful invocation of this operation will return areference to a
IngestRequest object. (see section 2.3.26).

The exception BadL ocation will be returned if the client supplies a
location description which is syntactically invalid, incomplete or specifies a
location unknown or inaccessible by the IngestMgr. This does not require the
IngestM gr to determine the validity of the user_name - password combination
specified in location or the availability of space at location to return
successfully. The exception UnknownProperty will be returned if the client
has supplied one or more properties unknown or unsupported by this
IngestM gr. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the UnknownProperty exception will contain
an explanation containing the names of all the unknown or unsupported
properties supplied which caused the exception. The exception
BadPropertyValue is returned if the client has supplied one or more values for
properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure
(See section 2.4.1) returned with the BadPropertyV alue exception will contain
an explanation containing the names and values of all the properties supplied
which caused the exception as well as a description of the appropriate or
acceptable values for those properties.

2.3.14 ProfileMgr

interface Profil eMyr: Request Manager
{

Profil eRequest submt_profile (in string product_type, in
Query query, in PropertyList properties)
rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownProperty, BadPropertyVal ue);

}

The ProfileMgr interface provides operations that allow a client to submit
standing queries. A standing query is a query on a catalog that continually
monitors the catalog for new entries that match the specified query attributes.
This interface defines the following operation:

2.3.14.1 submit_profile

Profil eRequest submt profile (in string product type, in Query
query, in PropertylList properties)

37

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownPr operty, BadPropertyVal ue);

This operation submits a profile (standing query) for processing. The
format of the operation parameters, exceptions and properties for this
operation are identical in form and meaning to those of the submit_query
operation defined on the CatalogAccessMgr (See section 2.3.10).

2.3.15 VideoAccessMgr

The VideoAccessMgr isintended to provide operations that allow a client
to access a video data set as atemporal stream as well as a geospatial data set.
The requirements and design of this interface and methods are TBR.

2.3.16 Request

i nterface Request

{
Request Descri ption about ();

void user _info (in string nmessage)
raises (InplementationLimt);

UCQ : Status get _status ();
voi d cancel ();

voi d regi ster_cal |l back (in Callback call back)
rai ses (UnknownCal | Back) ;

void free_cal |l back (in Callback call back)
rai ses (UnknownCal | Back, Unregi steredCal |l Back);

void register _email callback (in UCQO: Enail Address address, in
string user_mnessage)
rai ses (BadEmail Address, |nplenentationLimt);

Request Manager whi ch_request _nanager ();
b

The Request interface is an abstract interface that defines those
operations that are common to request objects. Each operation of a
RequestM anager (See section 2.3.5) returns areference to a specialized
Request object. All specialized Request objects are derived (inherit) from
Request. This interface defines the following operations:

38

2.3.16.1 about

Request Descri ption about ();

2.3.16.2 user_info

This operation returns a RequestDescription structure (See section
2.2.2.4) that describes the Request.

void user _info (in string message)
raises (IlnplenmentationLimt);

2.3.16.3 get_status

UuCO : St at us

This operation allows a client to provide information that describes the
Request. The client supplies this information, in the form of a string in
message . A successful invocation of this operation associates the clients
message with the Request. This client supplied information can be accessed in
the user_info element of the RequestDescription structure returned by the
about operation (see above).

The ImplementationLimit exception will be returned if the client supplies
amessage that exceeds the maximum length allowed by the implementation.
This maximum length is implementation dependent.

get _status ();

This operation returns the current status of the Request. A successful
invocation returns a Status structure (see the UCOS document for details).

2.3.16.4 cancel
voi d cancel ();

This operation is used to terminate further processing of a Request. After
successful invocation of this operation, all current and future processing
associated with this Request is terminated.

Bef ore After
OCOMPLETED OCOMPLETED
| N_PROGRESS CANCELED
ABCRTED ABCRTED
CANCELED CANCELED
PENDI NG CANCELED
OTHER CANCELED

39

2.3.16.5 register_callback

voi d regi ster_cal |l back (in Callback call back)
rai ses (UnknownCal | Back);

This operation allows a client to register a callback object with a Request.
The purpose of a callback object is to provide a method to allow the Request
to notify the client that processing of a Request has reached a terminal state. (
See section 2.2.1.3 for a description of terminal states) A client can register
zero or more Callback objects with a Request. Registering the same callback
object more then once with the same Request results in that Callback being
registered only once. The client indicates the callback object to be registered
by supplying areference to a Callback object in callback . Following
successful invocation of this operation the callback specified will be
associated with this Request (registered). When this Request reaches a
terminal state, the appropriate operation(s) on the specified callback object
will be invoked. (see section 2.3.27 for details of the operations invoked on
the callback object).

The exception UnknownCallBack will be returned if the client supplies a
reference to a Callback object that is unknown or unreachable by the Request.

2.3.16.6 free callback

void free_cal |l back (in Callback call back)
rai ses (UnknownCal | Back, Unregi steredCal | Back);

This operation allows a client to remove a callback previously registered
with a Request. The client supplies areference to the Callback that is to be de-
registered. Following successful invocation of this operation, the Callback
specified will no longer be registered with this Request.

The exception UnknownCallBack will be returned if the client supplies a
reference to a Callback object that is unknown or unreachable by the Request.
The exception UnregisteredCallBack will be returned if the client attempt to
free a callback which has not previously been registered with this Request.

2.3.16.7 register_email _callback
void register _email callback (in UCQO: Email Address address, in

string user_mnessage)
rai ses (BadEmail Address, |nplenentationLimt);

This operation allows a client to submit arequest to be notified by email

when a Request reaches a terminal state (See section 2.2.1.3 for a description
of terminal states).

40

Note: Thereis currently no operation to free or remove and email callback.
Operations to support that function will be added in alater version of this
specification.

2.3.16.8 which_request_manager

Request Manager whi ch_request _nanager ();

This operation allows a client to discover which RequestM anager is
managing the Request. A successful invocation of this operation returns a
reference to the RequestM anager that is managing this Request. This reference
can be narrowed (cast) into a more concrete type.

2.3.17 DisseminateRequest
interface DisseminateRequest: Request

{
void complete ();
};

The DisseminateRequest is returned by invocations of the disseminate
operation of the GeoDataSetMgr. This interface defines the following
operation:

2.3.17.1 complete
void conplete ();
This operation allows a client to complete processing of the
DisseminateRequest. This operation blocks until the requested dissemination

reaches aterminal state (See section 2.2.1.3 for a description of aterminal
state)

2.3.18 FeatureRequest
interface FeatureRequest: Request

{
void complete ();
};

The FeatureRequest is returned by invocations of the get_features

operation of the GeoFeatureM gr. This interface defines the following
operation:

41

2.3.18.1 complete

void conplete ();

This operation allows a client to complete processing of the
FeatureRequest. This operation blocks until the requested operation reaches a
terminal state (See section 2.2.1.3 for a description of aterminal state)

2.3.19 CreationRequest

interface O eati onRequest : Request

{
Product conplete ();
}

The CreationRequest is returned by invocations of the create and
metadata_create operation of the CreationMgr. This interface defines the
following operation:

2.3.19.1 complete
Product conplete ();

This operation allows a client to complete processing of the
CreationRequest. This operation blocks until the requested operation reaches a
terminal state (See section 2.2.1.3 for a description of aterminal state) A
successful invocation of this operation returns a Product reference to the
newly created product.

2.3.20 GetRegionRequest

i nterface CGet Regi onRequest : Request

{
Regi onData conpl ete ();
b

The GetRegionRequest is returned by invocations of the get_region
operation of the ArrayAccessMgr. This interface defines the following
operation:

2.3.20.1 complete

42

Regi onDat a conpl ete ();

This operation allows a client to complete processing of the
GetRegionRequest. This operation blocks until the requested operation
reaches aterminal state (See section 2.2.1.3 for a description of aterminal
state). A successful invocation of this operation returns a RegionData structure
contain the data of the region requested.

2.3.21 QueryRequest

i nterface QueryRequest: Request
{

void nunHts (in long hits);

QueryResults conplete ();
b

The QueryRequest is returned by invocations of the submit_query
operation of the CatalogA ccessMgr. This interface defines the following
operations:

2.3.21.1 numHits

void nunHts (in long hits);

This operation allows a client to set the number of results (*hits’) that are
returned by invocations of the operation complete (see below). This operation
also sets the number of hits accumulated by this QueryRequest before a
callback is triggered.

2.3.21.2 complete

QueryResults conplete ();

This operation allows a client to complete processing of the
QueryRequest. This operation blocks until the number of results set by
numHits has been accumulated or all results have been processed. A
successful invocation of this operation returns a QueryResults structure
containing results from the query. Subsequent invocations of this operation
can be used to retrieve any remaining results. The number of results returned
in this structure is determined by the value set in ainvocation of numHits (see
above). A retrieval that returns a number of results less then the value
previously set by numHits indicates that all results have been retrieved. If
numHits has not been called prior to the invocation of complete, the number

43

of results returned in the QueryResults structure is determined by a default
value which is implementation dependent.

2.3.22 ProfileRequest

interface Profil eRequest: Request

{
void nunHts (in long hits);

QueryResults conplete ();
b

The ProfileRequest is returned by invocations of the submit_profile
operation of the ProfileMgr. This interface defines the following operations:

2.3.22.1 numHits
void numHts (in long hits);

This operation allows a client to set the number of results (*hits’) that are
returned by invocations of the operation complete (see below). This operation
also sets the number of hits accumulated by this ProfileRequest before a
callback is triggered.

2.3.22.2 complete

QueryResults conplete ();

This operation allows a client to complete processing of the
ProfileRequest. This operation blocks until the number of results set by
numHits has been accumulated or all results have been processed. A
successful invocation of this operation returns a QueryResults structure
containing results from the profile. Subsequent invocations of this operation
can be used to retrieve any remaining results. The number of results returned
in this structure is determined by the value set in ainvocation of numHits (see
above). A retrieval that returns a number of results less then the value
previously set by numHits indicates that all results have been retrieved. If
numHits has not been called prior to the invocation of complete, the number
of results returned in the QueryResults structure is determined by a default
value which is implementation dependent.

2.3.23 MakeAvailableRequest

44

i nterface MakeAvai | abl eRequest : Request

{
void conplete ();
s

The MakeAvailableRequest is returned by invocations of the
make_available operation of the AccessMgr. This interface defines the
following operation:

2.3.23.1 complete
void conplete ();

This operation allows a client to complete processing of the
MakeAvailableRequest. This operation blocks until the requested operation
reaches aterminal state. (See section 2.2.1.3 for a description of aterminal
state) Upon successful completion of this operation, the
MakeAvailableRequest isin aterminal state. If that terminal stateis
COMPLETED, the product or data set requested is in the UseM ode requested.

2.3.24 HitCountRequest
i nterface H t Count Request : Request

{
| ong conplete ();
b

The HitCountRequest is returned by invocations of the hit_count
operation of the CatalogAccessMgr. This interface defines the following
operation:

2.3.24.1 complete
| ong conplete ();
This operation allows a client to complete processing of the
HitCountRequest. This operation blocks until the requested operation reaches
aterminal state (See section 2.2.1.3 for a description of aterminal state) A

successful invocation of this operation returns a value that indicates the total
number of results (“hits”) that would be returned if the query was executed.

2.3.25 ParametersRequest

45

i nterface Paranet er sRequest : Request

{
PropertyLi st conplete ();
b

The ParametersRequest is returned by invocations of the get_parameters
operation of the ProductAccessMgr. This interface defines the following
operation:

2.3.25.1 complete
PropertyList conplete ();

This operation allows a client to complete processing of the
ParametersRequest. This operation blocks until the requested operation
reaches aterminal state (See section 2.2.1.3 for a description of aterminal
state) A successful invocation of this operation returns a PropertyList structure
that contains the properties and current values of those properties of the
product or data set requested.

2.3.26 IngestRequest
i nterface | ngest Request : Request

{
void conplete ();
s

The IngestRequest is returned by invocations of the bulk _pull and
bulk_push operations of the IngestMgr. This interface defines the following

operation:

2.3.26.1 complete
void conplete ();

This operation allows a client to complete processing of the
IngestRequest. This operation blocks until the requested operation reaches a
terminal state (See section 2.2.1.3 for a description of aterminal state) A
successful invocation of this operation indicates that the file containing the
metadata to be exchanged is available. For the bulk_pull operation this
indicates that the metadatafile is at the delivered to the location specified and
is ready to be ingested by the pulling library. For the bulk_push operation this
indicates that the metadata file has been found by the receiving library at the
location specified. This operation does NOT indicate that the metadata file has

46

been successfully ingested by the receiving library. It merely indicates
successful transfer of and access to the metadatafile.

2.3.27 Callback

i nterface Call back

{

voi d cal | back_notify (in RequestDescription description);

void released ();

};

2.3.27.1 callback_notify
voi d cal | back_notify (in RequestDescription description);

This operation notifies the Callback that it has been triggered or
activated. A Request that has reached aterminal state (See section 2.2.1.3 for
adescription of terminal states) will trigger or activate all callbacks registered
with it. (See section 2.3.16.5 for registration of callbacks with Requests) A
Request will activate a callback by invoking this method and supplies a
description of the triggering Request in description . (see section 2.2.2.4 for

RequestDescription)
2.3.27.2 released

voi d rel eased ();

This operation is invoked by the Request to indicate that the Callback
will no longer be used (will not be notified in the future). This allows a client
to release any resources associated with this callback.

2.4 Exceptions
2.4.1 Exception Information

All user-defined exceptions return a consistent argument called
exception info. User-defined exceptions are error conditions which are
explicitly defined in the GIAS IDL.

Theexception info structureis defined as:

a7

struct exception_info

{
};

string exception_details;

The exception_details element is used to amplify the exact cause or condition
that generated the exception. This element is meant to be a human-readable
explanation of the exception and its cause.

There is also a standardized set of general purpose exceptions defined by
industry which address the most common reasons for failures, including
communication and network errors (See Appendix B).

The following sections detail the exceptions defined in this specification:

2.4.2 BadAccessCriteria

This exception indicates the client has supplied incomplete, invalid or
otherwise unacceptable access criteria. The exception_details element of
exception_info will identify the unacceptable access criteria submitted.

2.4.3 BadAccessValue

This exception indicates that one or more values supplied for access
criteria was missing, incorrect or otherwise unacceptable. The
exception_details element of exception_info will identify which access
criteria element(s) submitted were unacceptable and if appropriate the
acceptable values or range of values.

2.4.4 BadCreationAttributeValue

This exception indicates the client supplied a value for one or more
creation attributes with an inappropriate type or invalid value (i.e. exceeded
the allowed or expected range) The exception_details element of the
exception_info structure will contain an explanation containing the names and
values of all the unacceptable creation attributes supplied as well as a
description of the appropriate or acceptable values for those elements.

2.4.5 BadEmail Address

This exception indicates that the client supplied an email address that was
syntactically incorrect, uninterpretable or unreachable from the server. The
exception_details element of the exception_info structure will contain the
email address as received by the server.

48

2.4.6 BadGeoRegion

This exception indicates that a GeoRegion data structure supplied by the
client isincomplete or describes aregion that is inappropriate for the
processing requested (i.e. region is not contained in the requested product)

2.4.7 BadLocation

This exception indicates the client supplied a FileL ocation structure that
is syntactically invalid, incomplete or specifies a location unknown or
inaccessible by the server.

2.4.8 BadPropertyValue

This exception indicates the client supplied a value for one or more
properties which are inappropriate or exceed the allowed or expected values of
that property. The exception_details element of the exception_info structure
will contain an explanation containing the names and values of all the
unacceptable properties supplied as well as a description of the appropriate or
acceptable values for those properties.

2.4.9 BadQuery

This exception indicates that a query submitted by the client has
improper syntax. Thiswould include missing or mismatched delimiters, use of
undefined operators or use of an operator inappropriate for an attribute. See
Chapter 3 for adescription of the BNF that describes the syntax for queries.

2.4.10 BadQueryAttribute

This exception indicates the client supplied one or more attributes
unknown or unsupported by the server. The exception_details element of the
exception_info structure will contain the unacceptable attributes.

2.4.11 BadQueryValue

This exception indicates the client supplied one or more values for query
attributes which are inappropriate or exceed the allowed or expected values
for that attribute. The exception_details element of the exception_info
structure will contain an explanation containing the names and values of all
the unacceptabl e attributes and their supplied value as well as a description of
the appropriate or acceptable values for those attributes

49

2.4.12 BadTime

This exception indicates the client supplied atime value that is
incomplete or exceeds the allowed or expected range of times. The
exception_details element of the exception_info structure will contain the
unacceptable time value supplied as well as the allowed or expected range of
times.

2.4.13 BadUseMode

This exception indicates the client requested a UseMode that is
inappropriate or unsupported for the product or conditions requested.

2.4.14 ImplementationLimit

This exception indicates the client requested an operation with a
parameter that exceeds an implementation specific limit for that parameter.
The exception_details element of the exception_info structure will contain a
the name of parameter exceeded as well as the expected or allowed range of
values for that parameter.

2.4.15 UnknownCallBack

This exception indicates the client supplies a reference to a Callback
object that is unknown or unreachable by the Request.

2.4.16 UnknownCreationAttribute

This exception indicates the client supplied a creation attribute that is
unknown or unsupported by the server. The exception_details element of the
exception_info structure will contain an explanation containing the names of
all the unknown or unsupported elements.

2.4.17 UnknownProductType
This exception indicates the client supplied data type unknown or
unsupported by the server. The exception_details element of the

exception_info structure will contain an explanation containing the name of
the unknown or unsupported product type.

2.4.18 UnknownManager Type

50

This exception indicates the client requested a manager type unknown or
unsupported by thisimplementation. The exception_details element of the
exception_info structure will contain an explanation containing the name of
the unknown or unsupported manager type.

2.4.19 UnknownProduct

This exception indicates that the client requested a product reference
unknown to the server.

2.4.20 UnknownProperty

This exception indicates the client supplied one or more properties
unknown or unsupported by the server. The exception_details element of the
exception_info structure will contain an explanation containing the names of
all the unacceptable properties supplied.

2.4.21 UnknownRequest

This exception indicates the client supplied a reference to a Request that
is unknown to the server.

2.4.22 UnknownUseMode

This exception indicates the client supplied a UseM ode unknown or
unsupported by the server. The exception_details element of the
exception_info structure will contain an explanation containing the name of
the unacceptable UseM ode supplied.

2.4.23 UnregisteredCallBack

This exception indicates the client attempted an operation that requires a
registered callback with areference to a callback that has not been previously
registered.

51

3. Boolean Query Syntax

3.1 Overview

The Boolean query syntax (BQS) is akey part of the specification of the
GIAS. Theintent of the BQS isto formally define the syntax for queries made on
geospatial catalogs. It is necessary to define the BQS in the GIAS specification to
“decouple’ the interfaces using for querying from the implementation details of
the catalog. For example, the BQS allows a client to interact with a geospatial
catalog in auniform way regardless of the database or database type underlying
the catalog implementation, the native query language of the database and the
physical schema or data model of the database. This approach has the dual
benefit of simplifying the generation of queries by the client while not
constraining the catalog developers in the design choices for the implementation.
The catalog implementors must however provide the capability to translate the
BQS into whatever query language and physical schema they have chosen.

3.2 BQSDesign

The BQS is based upon the concept of a attribute-operator-value triplet
called afactor. Each factor represents a condition of interest to the client. These
factors can be assembled into a complete query by relating the factors with the
Boolean operators “and” and “or”.

The formal definition of the syntax of the BQS, described in Backus-Naur Form
(BNF), is detailed below.

3.3 BNF definition

The Backus-Naur Form (BNF) for the Boolean query syntax is show below.

query ::=1["not"] term { "or" term}

term::= factor { "and" factor }

factor::=(sinple_attribute_name conp_op constant_expression)
| (geo_attribute_name geo_op geo_el enent)
| (geo_attribute_name rel _geo_op nunber dist_units

“of ” geo_el enent)
| (text_attribute name ["not"] "like" quoted_string

| ("(" query)")

52

53

attribute name ::= a nenber of the set of queryable attribute
nanmes (defined in the appropriate G AS profile)

sinple_attribute nane ::= nenber of subset of attribute_nane
for which bool ean operators (conp_op) are all owed

geo_attribute name ::= nenber of subset of attribute_nane for
whi ch geospatial operators are all owed

text _attribute_nane ::= nenber of subset of attribute _nane for
which string operators are allowed (“free text search”)

comp_op 1= "= US| ST | Mt | test | e

constant _expression ::= nunber | quoted_string

geo_op ::= “intersect” | “outside’| “inside”

rel_geo op ::=“within” | “beyond”

dist_units ::= “feet” | “neters” | “statute mles” | “nautical
mles” | “kiloneters”

geo_elenment ::= point | polygon | rectangle | circle | ellipse
| Iine | polygon_set | 3dpoint

sign ::="“+" | “-" | *“” /] plus or mnus or nothing

nunber ::= signn["." [n]]

n ::=digit { digit }

digit ::= “0" | “1" | “2 | “3" | “4" | “5" | “6" | “7" | “8
|7

quoted string ::=""" { character } """

character ::= “a”|"b"|

Del =*,” /] Delimter

[atitude ::= nunber

| ongi tude ::= nunber

altitude ::= nunber

hem ::=*“N | “S" | “E" | “W

DVB ::=[digit] digit digit “:” digit digit “:” digit digit
“.7 digit hem

latlon ::= latitude Del longitude | DVb5 Del DV5

coordinate ::= latlon

point :: = *“PANI" “(“ coordinate “)”

3dpoi nt = “3DPANI” “(“ coordinate Del altitude “)”

pol ygon ::= “PCLYGN “(* coordinate Del coordi nate Del

coordi nate {Del coordinate}*)”

rectangle ::= “RECTANGLE’ “(" upper_left Del lower_right *)”
upper left ::= coordinate

| ower_right ::= coordinate

circle ::= “CdRCLE “(" coordinate Del radius “)”

radi us ::= nunber

ellipse ::= “ELLIPSE" “(“ coordinate Del major_axis_|len Del
mnor_axis_len Del north_angle “)”

maj or _axis_len ::= nunber

m nor_axi s_len ::= nunber

north_angl e ::= nunber

Il)ne o= “LINE" “(" coordinate Del coordinate { Del coordi nate}
pol ygon_set ::= “PCLYQON SET” “(“ polygon { Del polygon} “)”

The BNF rules are augmented by the following constraint:
Wildcard expressions are allowed using the character "%" to denote a match with

0 or more characters. For example the query:
name |ike 'rob%

would match the following strings:
‘rob' "robert' 'robin'

54

55

The "like" and "not like" operators are the only operators used for text
expressions and the only operators supporting wildcards.

Wildcards can be used to implement the effect of many character matching
operations, such as: contains, begins with, ends with, not contains, not begins
with, not ends with, and so forth.

For example:
attribute like '%ontains_this%
attribute like 'begins_wth_this%
attribute like '%nds_with_this'
attribute not like "%ill_not_contain_this%
attribute not |ike

"will_not_begin_wth_this%

attribute not like "%ill_not_end with_this’

4. Appendix A: GIASIDL

//***
* %

/1*

[1* The Ceospatial and |Inmagery Access Service
/1*

/1*

[1* Description: Defines the data types and interfaces
needed //* to support search, retrieval and access to
geospatial data //* such as images, maps charts and their
supporting data

/1*

/1*

/1*

/1*

/1* H story:

/1* Dat e Aut hor Comment

[]* oooo. oo oo

/1* 15 May 97 D. Lutz Initial release for review
/1* 2 July 97 D Lutz Rel eased for TEM Revi ew
/1* 11 July 97 D. Lutz Changes based on 2 July TEM
/1* 18 July 97 D. Lutz Rel eased for NINVA CCB

/1*

/1* Not es

I

/1* NONE

/1*

/1*

//***
* %

//***
* %

/1* The USI GS Common (bj ect Specification (UCOS) contains
/1* all the basic data types and interfaces comon across
/1* Usl GS

//***
* %

#i ncl ude "ucos.idl"

//***
* %

I1*
I1* Mdul e G AS
I1*

57

I1*

/1* Descri pti on:

| magery

[1* Access Service

I1*
I1*

//***

* %

modul e A AS

{

//Forward references for all

/1 The Library itself

nt erf ace

Li brary;

/] The data-like objects

nt erf ace
nt erf ace

/1 Abstract
nterface
nterface
nterface

Il Specific
nterface
nterface
nterface
nterface
nterface
nterface
nterface
nterface
nt erface

Il

Pr oduct ;
CeoPr oduct ;

cl asses that hel p define the nmanagers
Manager ;

Request Manager ;

AccessManager ;

manager s defi ned
GeoDat aSet Myr ;
(GeoFeat ureMyr ;
Creati onMyr;

Cat al ogAccessMyr;
Profil eMyr;
ArrayAccessMyr;
Pr oduct AccessMyr ;
| ngest Myr ;

Vi deoAccessMyr;

/] The abstract request objects

nt erf ace

Il Specific
nterface
nterface
nterface
nterface
nterface
nterface
nterface
nterface
nterface

Request ;

requests defi ned

D ssem nat eRequest ;
Feat ur eRequest ;

Cr eat i onRequest ;

CGet Regi onRequest ;
Quer yRequest ;

Profil eRequest;
MakeAvai | abl eRequest ;
H t Count Request ;

Par anet er sRequest ;

The mai n nodul e for the Geospati al

interfaces, just for conveni ence

I nterface | ngest Request ;

/1 A general call back object
I nterface Cal |l back;

//***
* %

/1* G AS specific data types

//***
* %

t ypedef sequence < Library > LibrarylList;

struct LibraryDescription

{

string |library_nane;
string library_description;

b
t ypedef UCQO : NanmeVal ueLi st PropertylLi st;
typedef UQQ : Rect angl e GeoRegi on;
struct Regi onDat a

GeoRegi on boundari es;
UCQO : NaneVal ueli st regi on_dat a_header;
any tile_data;

};

typedef string Query;

t ypedef | ong Nodel D,
t ypedef | ong Edgel D,

struct Node

Nodel D i d;
string attribute_nane;
any val ue;

};

struct Edge
{
Edgel D i d;
Nodel D start_node;
Nodel D end_node;
string rel at _narne;

58

59

};

string rel at_type;

t ypedef sequence < Node > Nodeli st;
t ypedef sequence < Edge > Edgeli st;

struct DAG

NodeLi st nodes;
EdgelLi st edges;

}

typedef sequence < DAG > QueryResults;

/1 end QueryResults

t ypedef
t ypedef

t ypedef
t ypedef

sequence < Request > RequestLi st;
sequence < string > Manager Li st;

string UseMde;
sequence < UseMbde > UseMbdeli st

struct RequestDescription

{

string user_info;
string request _type;
string request _info;

};

UCQO : NaneVal ueli st request details;

//***

* %

I1*

The Exceptions

//***

* %

struct exception_info

{
};

except i
except i
except i
except i
except i
except i
except i
except i

on
on
on
on
on
on
on
on

string exception_details;

BadAccessCriteria {exception_info info;};
BadAccessVal ue {exception_info info;};

BadCreati onAttri buteVal ue {exception_info info;};
BadEnai | Addess {exception_info info;};
BadGeoRegi on {exception_info info;};

BadLocati on {exception_info info;};

BadPr opertyVal ue {exception_info info;};

BadQuery {exception_info info;};

exception BadQueryAttribute {exception_info info;};
exception BadQueryVal ue {exception_info info;};
exception BadTime {exception_info info;};

excepti on BadUseMbde {exception_info info;};

exception InplenmentationLimt {exception_info info;};
exception UnknownCal | Back {exception_info info;};
exception UnknownCreati onAttribute {exception_info info;};
exception UnknownPr oduct Type {exception_info info;};
exception UnknownManager Type {exception_info info;};
exception UnknownProduct {exception_info info;};
exception UnknownProperty {exception_info info;};
exception UnknownRequest {exception_info info;};
exception Unregi steredCal | back {exception_info info;};
exception UnknownUseMbde {exception_info info;};

//***
* %

*
{1/ The I nterfaces
//***
* %

//***
* %

/1* interface G AS::Library.

/1*

/1* Description: This object represents a Library. It

/1* provi des met hods to di scover and acquire nanager

obj ect s,

/1* whi ch provide access to all the functionality of this
/1* Li brary

/1*

//***
* %

interface Library

{
Manager Li st get nanager types ();

UCQO : NaneVal ueli st access criteria (in string nmanager_type)
rai ses (UnknownManager Type);

Manager get _manager (in string nmanager_type, in
UCQO : NaneVal ueli st access criteria)

rai ses (UnknownManager Type, BadAccessCriteri a,
BadAccessVal ue) ;

Li braryDescri pti on about ();

60

61

//***
* %

I1* Interface G AS.: Product.

/1* This object represents a dataset contained in a
Li brary.

/1* It serves as a unique identifier to a particul ar
/1* dat aset .

/1*

/1* No net hods are defined on Product.

/1*

//***
* %

i nt erface Product

{

s
//***
* *

/1* Interface G AS. : GeoProduct .

/1* Thi s object represents a geospatial dataset contained
in

/1* an Library. It serves as a unique identifier to a
/1* particul ar dataset.

/1*

/1* No net hods are defined on GeoProduct.

/1*

//***
* %

i nt erface CGeoProduct : Product

{
}

//***
* %

/1* Interface G AS:: Manager

/1*

/1* Description: This (abstract) object defines the basic
/1* functions common to all types of nanagers.

I1*
I1*

//***
* %

I nt erf ace Manager

{
PropertyLi st get_properties (in UCQO : NaneLi st
desi red_properties)
rai ses (UnknownProperty);

Li braryList get _libraries ();
b

//***
* %

/1* Interface G AS:: Request Manager

/1* Derived from d AS:. : Manager

/1*

/1* Description: This (abstact) object defines the basic
/1* functions common to nanagers that uses methods that
/1* gener ate request objects.

/1*

/1*

//***
* %

i nterface Request Manager : Manager

{
Request Li st |ist_active requests ();
voi d set_default_tineout (in |Iong new default)
rai ses (I nplenentationLimt);
| ong get default _tinmeout ();
void set _timeout (in Request request, in long new lifetine)
rai ses (UnknownRequest, InplenentationLimt);
voi d del ete request (in Request request)
rai ses (UnknownRequest);
s

//***
* %

/1* interface G AS:: AccessManager

62

63

I1*

/1* Description: Provides functions to check and request

t he

/1* availability of Library products for specific purposes
I1*

//***
* %

I nt erface AccessManager

{
UseModeLi st |ist_use nodes ();
bool ean check availability (in Product product, in UseMde
use_node)
rai ses (UnknownProduct, UnknownUseMbde, BadUseMbde);
MakeAvai | abl eRequest nake _avail able (in Product product, in
UseMbde use node, out |ong del ay)
rai ses (UnknownProduct, UnknownUseMbde, BadUseMbde);

s

//***
* %

/1* The Managers
/1*

//***
* %

//***
* %

/1* interface G AS:: GeoDat aSet Myr

/1* Derived from 3 AS: : Request Manager and

A AS: : AccessManager

I1*

/1* Description: Provides nethods to request the

/1* di ssemnation of a whole Product (dataset) as a file.
I1*

I1*

I1*

//***
* %

I nterface CGeoDat aSet Myr: Request Manager , AccessManager
{

D ssem nat eRequest di ssemnate (in Product product, in
UCO : Fi |l eLocation | ocation, in PropertyList properties)
rai ses (UnknownProduct, BadLocation, UnknownProperty,
BadPr opert yVal ue) ;

D ssem nat eRequest get subgeo (in GeoProduct product, in
GeoRegion region, in UCO:FileLocation |location, in
PropertyLi st properties)

rai ses (UnknownProduct, BadCGeoRegi on, BadLocati on,
UnknownPr operty, BadPropertyVal ue);

}

//***
* %

/1* interface G AS:: GeoFeat ureMyr

/1* Derived from 3 AS: : Request Manager and

A AS: : AccessManager

[1*

/1* Description: Provides nethods to request the
/1* di ssemnation of a selected set of features froma
/1* GeoProduct (dataset) as a file.

[1*

[1*

[1*

[1*

//***
* %

I nterface CGeoFeat ur eMyr: Request Manager , AccessManager

{

Feat ur eRequest get features (in GeoProduct product, in
UCO : Fi |l eLocation | ocation, in PropertyList properties)
rai ses (UnknownProduct, BadLocation, UnknownProperty,
BadPr opert yVal ue) ;

//***
* %

/1* interface GAS:.: CeationMyr
/1* Derived from d AS: : AccessManager
/1* Description: Provides nethods to request/nomnate the

64

65

/1* archiving and catal oging of a new product to a Library
/1*
/1*

//***
* %

I nterface O eati onMyr: Request Manager

{

O eati onRequest create (in UGO : FilelLocati on new product,
in DAGcreation attributes, in PropertyList properties)

rai ses (BadLocation, UnknownQOeationAttribute,

BadCreati onAttri but evVal ue, UnknownPr operty,

BadPr opert yVal ue) ;

O eati onRequest netadata create (in DAG creation_attri butes,
in Propert yList properties)

rai ses (UnknownOreationAttribute, BadOQreati onAttri buteVal ue,
UnknownPr operty, BadPropertyVal ue);

//***
* %

/1* interface G AS.: Catal ogAccessMyr

/1* Derived from d AS: : AccessManager

/1*

/1* Description: Provides nethods to submt a query for
/1* pr ocessi ng

/1*

/1*

//***
* %

I nterface Catal ogAccessMyr: Request Manager
{

QueryRequest submt _query (in string product _type, in Query
query, in PropertylList properties)

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownPr operty, BadPropertyVal ue);

H t Count Request hit_count (in string product_type, in Qery
query, in PropertylList properties)

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownPr operty, BadPropertyVal ue);

}

//***
* %

/1* interface GAS::Profil eMr

/1* Derived from d AS: : Request Manager

/1*

/1* Description: Provides nmethods to submt a
/1* profil e/ standi ng query

/1*

/1*

//***
* %

I nterface Profil eMyr: Request Manager
{

Profil eRequest submt_profile (in string product_type, in
Query query, in PropertyList properties)

rai ses (UnknownProduct Type, BadQuery, BadQueryAttri bute,
BadQuer yVal ue, UnknownProperty, BadPropertyVal ue);

}

//***
* %

/1* interface G AS:.: ArrayAccessMyr

/1* Derived from 3 AS: : Request Manager and

A AS: : AccessManager

/1*

/1* Description: Provides nmethods to retrieve a "tile" out
of

/1* a CGeoProduct into nenory, where atileis a

/1* geogr aphi cal |y defi ned subregi on

/1*

/1*

//***
* %

i nterface ArrayAccessMyr: Request Manager , Accesshanager
{

66

67

CGet Regi onRequest get _region (in GeoProduct product, in
GeoRegion region, in PropertylList properties)

rai ses (UnknownProduct, BadGeoRegi on, UnknownProperty,
BadPr opert yVal ue) ;

//***
* %

/1* interface G AS:: Product AccessMr

/1* Derived from d AS: : AccessManager

/1*

/1* Description: Provides nmethods to retrieve data about a
/1* specific data set

/1*

/1*

//***
* %

I nterface Product AccessMyr: Request Manager

{

Par anet er sRequest get parameters (in Product product, in
PropertyList property |ist)
rai ses (UnknownProduct, UnknownProperty, BadPropertyVal ue);

s
//***
* *

/1* interface G AS:: I ngest Mr

/1* Derived from d AS:. : Request Manager

/1*

/1* Description: Provides nmethods to performbul k transfers
/1* of data between libraries

/1*

/1*

//***
* %

I nterface | ngest Myr: Request Manager
{

| ngest Request bul k_pul | (in string product _type, in

UCO :FileSet data files, in UCO :AbsTine since_time, in
PropertyList property |ist)

r ai ses(UnknownPr oduct Type, BadLocati on, BadTi ne,

| npl ementationLimt, UnknownProperty, BadPropertyVal ue);

| ngest Request bul k_push(in UCO :FileSet data files, in
PropertyList property list)
rai ses(BadLocati on, UnknownProperty, BadPropertyVal ue);

//***
* %

/1* interface G AS:: Vi deoAccessMyr

/1* Derived from d AS: : AccessManager

/1*

/1* Description: Provides nmethods to retrieve video data
/1*

/1* NOTE: This interface is TBR

//***
* %

[linterface Vi deoAccessMyr : Request Manager, AccessManager ({
11}

//***
* %

/1* interface G AS:: Request

/1*

/1* Description: An (abstract) object that provides nethods
/1* common to all fornms of requests

/1*

/1*

//***
* %

I nt erface Request

{

68

69

Request Descri ption about ();

void user_info (in string nessage)
raises (InplementationLimt);

UCQ : Status get _status ();
voi d cancel ();

voi d regi ster_cal |l back (in Callback call back)
rai ses (UnknownCal | Back) ;

void free call back (in Callback call back)
rai ses (UnknownCal | Back, Unregi steredCall back);

void register_email _callback (in UCO : Enail Address address,
in string user_ nessage)
rai ses (BadEnail Addess, |InplenentationLimt);

Request Manager whi ch_request _nanager ();

}

//***
* %

/1* interface G AS:: D ssem nat eRequest

/1* Derived from Q3 AS: : Request

I1* Description: Returned by calls to di ssem nate.
/1*

/1*

//***
* %

I nterface D ssem nat eRequest : Request

{
void conplete ();

b
//***
* *

/1* interface G AS:: Feat ur eRequest

/1* Derived from d AS: : Request

/1*

/1* Description: Returned by calls to get_features
/1*

/1*

//***
* %

I nt erface Feat ur eRequest : Request

{
void conplete ();
s

//***

/1* interface G AS:: O eationRequest

/1* Derived from 3 AS: : Request

/1*

[1* Description: Returned by calls to create

I1*
I1*

//***
* %

I nterface O eati onRequest: Request

Product conplete ();
}s

//***

/1* interface G AS.: (Cet Regi onRequest

/1* Derived from Q3 AS: : Request

/1*

/1* Description: Returned by calls to get_region

I1*
I1*

//***
* %

I nterface Cet Regi onRequest : Request

{
Regi onData conpl ete ();
b

//***
* %

70

71

/1* interface G AS:: QueryRequest

/1* Derived from Q3 AS: : Request

/1*

/1* Description: Returned by calls to query
/1*

/1*

//***
* %

I nterface QueryRequest : Request

void nunHts (in long hits);
QueryResults conplete ();

};
//***
* *

/1* interface G AS.: Profil eRequest

/1* Derived from Q3 AS: : Request

/1*

/1* Description: Returned by calls to submt_profile
/1*

/1*

//***
* %

i nterface Profil eRequest: Request

void numHts (in long hits)
raises (InplenentationLimt);

QueryResults conplete ();
s

//***
* %

/1* interface G AS:: MakeAvai | abl eRequest

/1* Derived from Q3 AS: : Request

/1*

/1* Description: Returned by calls to nmakeAvail abl e
/1*

/1*

//***
* %

I nt erface MakeAvai | abl eRequest : Request

{
void conplete ();
s

//***
* %

/1* interface G AS:: H t Count Request

/1* Derived from Q3 AS: : Request

/1*

/1* Description: Returned by calls to H tcount
/1*

/1*

//***
* %

I nterface H t Count Request : Request

{
l ong conplete ();
b

//***
* %

/1* interface G AS:: Paranet er sRequest

/1* Derived from Q3 AS: : Request

/1*

/1* Description: Returned by calls to get_paraneters
/1*

/1*

//***
* %

I nterface Paranet er sRequest : Request

{
PropertyLi st conplete ();

//***
* %

/1* interface G AS:: | ngest Request

/1* Derived from Q3 AS: : Request

/1*

/1* Description: Returned by calls to bul k_push and
bul k_pul |

72

73

I1*
I1*

//***
* %

I nterface | ngest Request : Request

{
void conplete ();
s

//***
* %

/1* interface G AS:: Cal | back

[1*

/1* Description: CGeneral callback interface

[1*

/1* NOTE: The Cal | back interface is inplenented on the
/1* "client" side to allow "servers"” to notify clients of
/1* conpl etion of requests.

I1*

//***
* %

i nterface Call back

{
voi d cal | back_notify (in RequestDescription description);
void rel eased ();
b
3 I/ end if nmodule G AS

5. Appendix B: Reference OMG Sandard IDL

CORBA Standard Exceptions

#defi ne ex_body {unsigned [ong mnor; conpletion_status
conpl eted; }

enum conpl eti on_status { COWLETED YES, COWPLETED NO
COVPLETED MAYBE} ;

enum exception_type {NO EXCEPTI ON, USER EXCEPTI ON,
SYSTEM EXCEPTI ON} ;

excepti on UNKNOM ex_body;
excepti on BAD PARAM ex_body;
excepti on NO MEMCRY ex_body;
exception | MP_LIMT ex_body;
excepti on COMM FAI LURE ex_body;
exception | NV_CBIREF ex_body;
excepti on NO PERM SSI ON ex_body;
exception | NTERNAL ex_body;
excepti on MARSHAL ex_ body;
exception | N TIALI ZE ex_body;
exception NO | MPLEMENT ex_body;
excepti on BAD TYPECODE ex_body;
excepti on BAD CPERATI ON ex_body;
excepti on NO RESQURCES ex_body;
excepti on NO RESPONSE ex_body;
excepti on PERS|I ST _STORE ex_body;
exception BAD | NV_CRDER ex_body;
excepti on TRANSI ENT ex_body;
exception FREE MEM ex_body;
exception | NV_I DENT ex_body;
exception | NV_FLAG ex_body;
exception | NTF_REPCS ex_body;
excepti on BAD CONTEXT ex_body;
excepti on CBJ_ADAPTER ex_body;
excepti on DATA CONVERSI ON ex_body;
excepti on CBJECT _NOT_EXI ST ex_body;

6. Appendix C - UML Diagrams

The GIAS IDL interface has been modeled using Unified Modeling Language
(UML). A brief description of the notation used for the GIAS class diagrams
was described in section 1.2. The purpose of this section isto provide amore
detailed overview of UML to show the reader the “what” and “how” of the
use of the various UML diagrams for analysis and modeling.

UML is based on three object-oriented modeling languages. 1) Object
Modeling Technique (OMT) by James Rumbaugh; 2) Booch Method by
Grady Booch; and 3) Object-oriented Software Engineering Method by Ivar
Jacobson. Although all three methods had a large critical mass of users the
authors were motivated to merge their modeling methods based on the
following rationale:

1. Their methods were evolving toward each other and already shared many
commonalties.

2. A common modeling language would greatly enhance communication
between designers and implementors.

3. A common modeling language would greatly enhance portability amongst
object-oriented analysis and design tool vendors.

4. A combination of the three methods would have a synergistic effect of
combining lesson learned and addressing problems that the former method
did not address well.

UML has been submitted as a standard modeling language to OM G and can
be obtained as OM G documents ad/97-01-01 % ad/97-01-14. Based on the
above rationale and potential for standardization was the justification used for
using UML as the modeling language for GIAS.

UML distinguishes between the notions of model and diagram. A model
contains all of the underlying elements of information about a system under
consideration and does so independently of how those elements are visually
presented. A diagram is a particular visualization of certain kinds elements
from a model and generally exposes only a subset of those elements' detailed
information. A given model element might exist on multiple diagrams, but
there is but one definition of that element in the underlying model.

UML defines notation and semantics for the following diagrams:
class diagrams - Is a collection of (static) declarative model elements,
such as classes, types, and their relationships, connected as a graph to
each other and to each other and to their contents. Class diagrams
may be organized into packages either with their underlying models
or as separate packages that build upon the underlying model
packages.

75

use-case diagrams - Is a graph of actors, a set of use cases enclosed
by a system boundary communication (participation) associations
between the actors and the use cased, and generalizations among the
use cases.
interaction diagrams
- sequence diagrams - Shows objects participating in a set of
interactions based on their “lifelines’ and the messages that they
exchange arranged in time sequence.
collaboration diagrams - Shows interactions amongst a set of
objects.
state diagrams - |s a bipartite graph of states and transitions. It shows
the sequences of states that an object or an interaction goes through
during itslife in response to received stimuli, together with its
responses and actions.
component diagrams - I's a graph of components connected by
dependency relationships. It shows aspects of implementation,
including source code structure and run-time implementation
structure.
deployment diagrams - I's a graph of nodes connected by
communication associations. It shows the configuration of run-time
processing elements and the software components, processes, and
objects that live on them.

76

7. Acronyms —
API Application Program Interface
BNF Backus-Naur Form
BQS Boolean Query Syntax
CAF Catalog Access Facility
ClIF Common Imagery Interoperability Facilities

ClIPCommon Imagery Interoperability Profile

CIHIWG
ClO
CORBA
COTS
DAG
GIAS
GOTS
IAF
IAS
IASS
IDF
IDL
1SO
NIMA
OMG
PNF
TBD
TBR
UCoOS
uUlP
UML
USIGS

Common Imagery Interoperability Working Group
Central Imagery Office
Common Object Request Broker Architecture
Commercial off-the-shelf
Directed Acyclic Graph
Geospatial & Imagery Access Services
Government off-the-shelf
Image Access Facility
Image Access Services
Image Access Services Specification
Imagery Dissemination Facility
Interface Definition Language
International Standard Organization
National Imagery and Mapping Agency
Object Management Group
Profile and Notification Facility
To Be Determined
To Be Resolved
USIGS Common Object Specification
USIGS Interoperability Profile
Unified Modeling Language
United States Imagery and Geospatial System

77

8. Points of Contact

US GS Architecture Integration Group

Ron Burns, National Imagery and M apping Agency
Phone: (703) 808-0891
FAX: (703) 808-0531
Email: BurnsR@nima.mil

Joe Wesdock, National Imagery and Mapping Agency
Phone: (301) 227-3110 x428
Email: WesdockJ@nima.mil

Project Lead for MITRE Interface Definition Support
John Polger, National Imagery and Mapping Agency
Phone: (202) 863-3004
FAX: (202) 488-0271
Email: PolgerJ@nima.mil

NIMA Libraries Interface Definition
Charlie Green, Sierra Concepts, Inc.
Phone: (610) 347-0602
FAX: (610) 347-0602
Email: cpg.sci @mindspring.com

GIAS Specification & Support, and RFCs
Dave Lutz, The MITRE Corporation
Phone: (703) 883-7848
FAX: (703) 883-3315
Email: diutz@mitre.org

US GS Interoperability Profile (UIP)

Bill Nell, Lockheed Martin Management & Data Systems
Phone: (610) 531-6012
FAX: (703) 962-3698
Email: William.H.Nell@Imco.com

D-1

